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Victor Dyseryn6, Andre Esser5, Thibauld Feneuil1, Philippe Gaborit6,
Romaric Neveu6, Matthieu Rivain1, Luis Rivera-Zamarripa5,

Carlo Sanna4, Jean-Pierre Tillich2, Javier Verbel5, and Floyd Zweydinger5

1 CryptoExperts, Paris, France
2 INRIA, Paris, France

3 LITIS University of Rouen Normandie, Rouen, France
4 Politecnico di Torino, Torino, Italy

5 Technology Innovation Institute, Abu Dhabi, UAE
6 University of Limoges, Limoges, France



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Mathematical Background and Notations . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 MinRank Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 All-but-one Vector Commitment (AVC) . . . . . . . . . . . . . . . . . . . . . . 8

3 High-Level Description of Mirath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 TCitH Framework in the PIOP Formalism. . . . . . . . . . . . . . . . . . . . 10
3.2 Dual Support Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Mirath Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Detailed Description of Mirath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Finite Fields Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Matrices Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Hash Functions and Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Randomness Generation and Sampling . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Batched All-but-one Vector Commitments . . . . . . . . . . . . . . . . . . . . 28
4.7 Commitment to Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.8 Computation of Polynomial Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.9 Parsing of the Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.10 Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.11 Signing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.12 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Parameter Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1 MinRank Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Protocol Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Key and Signature Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Implementation and Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1 Reference Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Optimized Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Known Answer Test Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.1 Security Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Known Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1 Generic Attacks against Fiat–Shamir Signatures . . . . . . . . . . . . . . . 47
8.2 Known attacks against the MinRank Problem . . . . . . . . . . . . . . . . . 47

9 Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A Variant using the VOLEitH Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B Variant with Smaller Public Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



List of Tables

1 Mathematical notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Algorithmic notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Polynomial modulus f(x) for multiplications in Fqµ . . . . . . . . . . . . . . . . . 22
4 MinRank parameters used in Mirath-a (q = 16) . . . . . . . . . . . . . . . . . . . . 38
5 MinRank parameters used in Mirath-b (q = 2) . . . . . . . . . . . . . . . . . . . . . 38
6 MPC parameters used in Mirath (q = 16 and q = 2) . . . . . . . . . . . . . . . . 39
7 Keys and signature sizes of Mirath-a (q = 16) . . . . . . . . . . . . . . . . . . . . . . 40
8 Keys and signature sizes of Mirath-b (q = 2) . . . . . . . . . . . . . . . . . . . . . . . 40
9 Performances of Mirath-a (Reference) in Millions (M) and Billions

(B) of CPU Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10 Performances of Mirath-b (Reference) in Thousands (K) and Billions

(B) of CPU Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11 Performances of Mirath-a (Optimized) in Millions of CPU Cycles. . . . . 42
12 Performances of Mirath-b (Optimized) in Millions of CPU Cycles. . . . . 43
13 Quantum security margin of different parameter sets. . . . . . . . . . . . . . . . 51
14 Keys and signature sizes of Mirath-v-a (VOLE variant, q = 16) . . . . . . . 54
15 Keys and signature sizes of Mirath-v-b (VOLE variant, q = 2) . . . . . . . . 54
16 Public-key sizes of KeyGen and KeyGen2. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

List of Algorithms

1 Transform a byte array into a matrix in Fnr×nc . . . . . . . . . . . . . . . . . . . . 23
2 Unparse matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Parse matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 Children nodes generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Pseudorandom element in Fm×r
q × Fr×(n−r)

q × Fρ×1
qµ . . . . . . . . . . . . . . . . . 26

6 Routine ExpandSeedPublicMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7 Routine ExpandSeedSecretMatrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8 Expand challenge evaluation points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Challenge matrix Γ ∈ F(mn−k)×k
qµ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

10 Routine BAVC.Commit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11 Routine BAVC.Open. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
12 Routine BAVC.Reconstruct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
13 Commit to witness (PS , PC′) and masking Pv polynomials. . . . . . . . . . . 31
14 Open random evaluations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
15 Compute evaluations of PS , PC′ and Pv on the opened points. . . . . . . . 32
16 Computation of the polynomial Pα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
17 Reconstruction of the polynomial Pα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
18 Unparse signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
19 Parse signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
20 Routine ComputeY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
21 Key generation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
22 Decompress public key routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



4 Mirath Team

23 Decompress secret key routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
24 Signing algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
25 Verification algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
26 Routine KeyGen2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
27 Routine DecompressPK2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
28 Routine DecompressSK2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
29 Routine ExpandSeedMAHB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
30 Routine ExpandSeedC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
31 Routine GetSpecialSolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Mirath Signature Scheme 5

Changelog

Version 2.0 (05/02/2025)

• The design Mirath relies on the TCitH framework [25,23] (or alternatively
the VOLEitH framework) along with the Dual Support Modeling [12]. As a
result, Mirath signature sizes have been significantly reduced with respect to
the signature sizes of MIRA and MiRitH.

• Mirath results from the merge of the MIRA [3,4] and MiRitH [1,2] schemes.
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1 Introduction

Mirath is a post-quantum digital signature scheme based on the hardness of the
MinRank problem. Informally, the MinRank problem [13] asks to find a non-
trivial low-rank linear combination of some given matrices over a finite field
(actually, Mirath employs an equivalent “dual version” of this problem [12]).

Mirath is based on a Zero-Knowledge Proof of Knowledge (ZKPoK) of a so-
lution to an instance of the MinRank problem. This ZKPoK is designed follow-
ing the Multi-Party-Computation-in-the-Head (MPCitH) paradigm [30]. More
precisely, we rely on the Threshold-Computation-in-the-Head (TCitH) [22,24]
framework to build Mirath, while a variant is possible using VOLE-in-the-Head
(VOLEitH) [9] framework. The ZKPoK is then converted into a signature scheme
using the Fiat–Shamir transform [26].

Mirath has been developed by the merger of two teams, each of which had
previously devised its own post-quantum digital signature scheme based on the
hardness of the MinRank problem, namely MIRA [3,4] and MiRitH [1,2]. The
name “Mirath” itself is composed from the names “MIRA” and “MiRitH.”

This document is structured as follows. We describe some mathematical back-
ground and the MinRank problem in Section 2. We provide a high-level descrip-
tion of Mirath in Section 3. Section 4 is devoted to the detailed description of all
the algorithms used in the signature scheme. The parameter sets of Mirath and
their corresponding public-key and signature sizes are given in Section 5. A per-
formance analysis of the scheme is presented in Section 6. A security analysis of
Mirath and some known attacks are provided in Section 7 and Section 8, respec-
tively. Finally, in Section 9, we summarize the main advantages and limitations
of Mirath.
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2 Mathematical Background and Notations

2.1 Notations

The main mathematical notations employed throughout this paper are summa-
rized in Table 1. We employ lower-case and upper-case bold letters for (column)
vectors and matrices, respectively. For every nr × nc matrix M , we let vec(M)
denotes the column-major vectorization of M , that is, the nrnc × 1 column
vector whose entries are the entries of M in column-major order.

Symbol Meaning

{0, 1}ℓ Set of binary strings of length ℓ.

{0, 1}∗ Set of binary strings of finite length.

str1 ∥ str2 Concatenation of the binary strings str1 and str2.

Fq A finite field of q elements.

Fnc×nr
q The vector space of nc × nr matrices over the field Fq.

0nc×nr The nc × nr zero matrix.

Is The s× s identity matrix.

rank(M) The rank of the matrix M .

vec(M) columns-major vectorization of the matrix M .

(A | B) The matrix obtained by juxtaposing the matrices A and B.

log The base-2 logarithm.

⊗ Bitwise multiplication (AND).

⊕ Bitwise addition (XOR).

Table 1. Mathematical notation.

2.2 MinRank Problem

The MinRank problem is the underlying hard problem of Mirath.

Definition 1 (MinRank Problem). Let q, m, n, k, and r be positive integers.
Let M1, . . . ,Mk,E ∈ Fm×n

q and x := (x1, . . . , xk) ∈ Fk
q be uniformly sampled

such that

rank(E) ≤ r and M := E −
k∑

i=1

xiMi.

Given M ,M1 . . . ,Mk, the MinRank problem of parameters (q,m, n, k, r) asks
to retrieve the vector x.
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Usually, the instance of the MinRank problem is generated by uniformly

sampling the matrices M ,M1, . . . ,Mk so that rank
(
M +

∑k
i=1 xiMi

)
≤ r.

Actually, in order to have a solution with a smaller size, Mirath employs the
following equivalent version of the MinRank problem, namely, the MinRank
Syndrome Problem, which was introduced by Bidoux et al. [12, Definition 8
and Proposition 2]. To introduce this version of the problem, we will use the
application vec. In fact, this application allows to obtain the generator ma-
trix of the code ⟨M1, . . . ,Mk⟩ as the matrix G ∈ Fmn×k

q whose columns are
vec(M1), . . . , vec(Mk), i.e,

G =
(
vec(M1) . . . vec(Mk)

)
.

By using the dual matrix of the code generated byG, i.e, usingH ∈ F(mn−k)×mn
q

such that HG = 0, the MinRank Syndrome Problem, on which Mirath relies,
can be obtained as follows:

Definition 2 (MinRank Syndrome Problem). Let q, m, n, k and r be

positive integers. Let H :=
[
Imn−k H ′] ∈ F(mn−k)×mn

q where H ′ ∈ F(mn−k)×k
q

is a uniformly sampled matrix, and y ∈ Fmn−k
q . The computational MinRank

Syndrome Problem(q, m, n, k, r) asks to find E such that

H vec(E) = y and rank(E) ≤ r.

2.3 All-but-one Vector Commitment (AVC)

The Mirath scheme rely on an all-but-one vector commitment scheme. Such a
primitive enables to commit to N random values v1, . . . , vN to later reveal all
of them except one. While there exists a naive solution which would consist in
committing each value independently and reveal all of them except one, an AVC
scheme aims to propose a more efficient solution, for which the communication
cost is sublinear in N (instead of being linear in N as in the naive solution).
In what follows, we give the definition of an AVC scheme. We only consider the
case where the random values are λ-bit seeds, since it is the setting which is
useful for the Mirath scheme.

Definition 3 (All-but-one Vector Commitment (AVC)). An all-but-one
vector commitment (AVC) scheme with message space {0, 1}λ and parameter N
is defined by the following algorithms:

– Commit()→ (hcom, key, (seed1, . . . , seedN )): Output a commitment hcom with

opening key key for messages (seed1, . . . , seedN ) ∈
(
{0, 1}λ

)N
.

– Open(key, i∗): On a opening key key and an index i∗ ∈ {1, . . . , N}, output
an opening πAVC for {seedi}i ̸=i∗ .

– Reconstruct(πAVC, i
∗) → ({seedi}i ̸=i∗ , hcom): On the opening πAVC and an

index i∗ ∈ {1, . . . , N}, output the messages {seedi}i ̸=i∗ , together the com-
mitment hcom.
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The scheme is said complete if an honestly-generated opening leads to the same
messages and the same commitment, namely for all i∗, if

(hcom, key, (seed1, . . . , seedN ))← Commit()
πAVC ← Open(key, i∗)

then we have h′
com = hcom and seed′i = seedi for all i ̸= i∗, where(
(seed′1, . . . , seed

′
N ), h′

com

)
← Reconstruct(πAVC, i

∗).

The scheme is said binding if it is hard to produce two openings πAVC and π′
AVC

leading to the same commitment while having differents messages. Finally, the
scheme is said hiding if it hard to recover seedi∗ from πAVC.

Let us remark that there are alternative definitions for the AVC scheme.
For example, instead of having the Reconstruct routine, we might have a Verify
routine which takes hcom and πAVC as input and outputs the messages when
the opening is consistent with the commitment and ⊥ otherwise. However, in a
context of signature scheme, the Reconstruct routine is more convenient.

In the Mirath scheme, we will need to use τ AVC schemes in parallel. There-
fore, instead of considering τ independent commitments, we can use a batched
variant of the all-but-one vector commitment scheme, which aims to produce
smaller opening proof (an opening proof of a batched AVC will be smaller than
τ opening proofs of an AVC).

Definition 4 (Batched All-but-one Vector Commitment (BAVC)). A batched
all-but-one vector commitment (BAVC) scheme with message space {0, 1}λ and
parameters (N, τ) is defined by the following algorithms:

– Commit()→ (hcom, key, {(seed(e)1 , . . . , seed
(e)
N )}e∈[1,τ ]): Output a commitment

hcom with opening key key for messages (seed
(e)
1 , . . . , seed

(e)
N ) ∈

(
{0, 1}λ

)N
for all e ∈ [1, τ ].

– Open(key, {i∗(e)}e): On a opening key key and τ indexes i∗(e) ∈ {1, . . . , N},
output an opening πBAVC for {seed(e)i }e,i ̸=i∗(e) .

– Reconstruct(πBAVC, {i∗(e)}e)→
(
{seed(e)i }e,i ̸=i∗(e) , hcom

)
: On the opening πBAVC

and indexes i∗(e) ∈ {1, . . . , N}, output the messages {seed(e)i }e,i ̸=i∗(e) , to-
gether the commitment hcom.

The properties of a BAVC scheme are the same than those of an AVC scheme,
up to the fact that they are defined for the τ parallel commitments.
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3 High-Level Description of Mirath

In this section, we provide a high-level description of theMirath signature scheme.
This scheme is built by applying the Fiat–Shamir transform on top of a ZKPoK of
a solution to an instance of the MinRank problem. The underlying proof system
uses the TCitH framework [25,24]. Parameters corresponding to a variant using
the VOLEitH framework [9] are given in Appendix A.

3.1 TCitH Framework in the PIOP Formalism

The MPCitH paradigm [30] is a versatile method introduced in 2007 to build
zero-knowledge proof systems using techniques from secure multi-party compu-
tation (MPC). This paradigm has been drastically improved in recent years and
is particularly efficient to build zero-knowledge proofs for small circuits such as
those involved in (post-quantum) signature schemes. The more recent MPCitH-
based frameworks are the VOLE-in-the-Head (VOLEitH) framework from [9]
and the Threshold-Computation-in-the-Head (TCitH) framework from [25,24].

In this subsection, we will describe the general proof system on which Mirath
is relying on. In what follows, we present this proof system using the formalism of
the Polynomial Interactive Oracle Proofs (PIOP), as presented by Feneuil [21].
Indeed, while the TCitH and VOLEitH frameworks have been respectively in-
troduced using a sharing-based and a VOLE-based formalism, one can unify
those two frameworks using the PIOP formalism, which enables us to have a
description that does not depend on MPC technologies7, leading to an easier-to-
understand scheme for those who do not already know those two frameworks.

Let us assume that we want to build an interactive zero-knowledge proof that
would enable a prover to convince a verifier that the prover knows a witness
w ∈ Fn

q that satisfies some public polynomial relations:

fj(w) = 0, for all j ∈ {1, . . . ,m},

where f1, . . . , fm are polynomials over Fq of total degree at most d. Let us
consider two proof parameters N,µ ∈ N such that N ≤ 2µ. The proof system
we consider is the following:

1. For each j ∈ {1, . . . , n}, the prover samples a random degree-1 polynomials
Pj such that Pj(X) = wj · X + (wbase)j for some (wbase)j ∈ Fqµ . He also
samples a random degree-(d − 1) polynomial P0 ∈ Fqµ [X]. He commits to
those polynomials.

7 In the TCitH framework, instead of performing operations over Shamir’s secret shar-
ings, we can directly work over their underlying polynomials. In the VOLEitH frame-
work, instead of performing operations over VOLE gadgets, we can directly work
over their underlying degree-1 polynomials.
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2. The verifier chooses random coefficients γ1, . . . , γm ∈ Fqµ and sends them
to the prover. The latter then reveals the degree-(d − 1) polynomial Q(X)
defined as

Q(X) = P0(X) +

m∑
j=1

γj · f [h]
j (X,P1(X), . . . , Pn(X)), (1)

where f
[h]
j is the homogeneous version of the polynomial fj , i.e.

f
[h]
j (Y,X1, . . . , Xn) := Y d · fj(X1/Y, . . . ,Xn/Y ).

3. The verifier samples a random evaluation point r from a public subset S ⊂
Fqµ of cardinality N and sends it to the prover. The latter then reveals the
evaluations vi := Pi(r), together with a proof π that the evaluations are
consistent with the commitment.

4. The verifier checks that the revealed evaluations are consistent with the
commitment using π and checks that we have

Q(r) = v0 +
m∑
j=1

γj · f [h]
j (r, v1, . . . , vn) . (2)

The above protocol assumes that the prover has a way to commit polynomials
and to provably open some evaluations later (while keeping hidden the other
evaluations).

Security Analysis. We can observe that the coefficient in front of the degree-d
monomial in the right term of Equation (1) is

m∑
j=1

γj · fj(w1, . . . , wn) , (3)

so the degree-(d− 1) polynomial Q is well-defined because this quantity is zero
when the witness w is valid. Let us assume that the prover is malicious, meaning
that he does not have a valid witness. This implies that there exists j∗ such
that fj∗(w) ̸= 0. In such a case, the probability that there exists some Q such
that Eq. (1) holds is at most 1/qµ over the randomness of γ1, . . . , γm, because
the coefficient (3) is zero only with probability 1/qµ. If Eq. (1) does not hold, the
probability that the check in Eq. (2) passes is at most d/N , since the degree-d
polynomial relation

Q(X)−

P0 +

m∑
j=1

γj · f [h]
j (X,P1(X), . . . , Pm(X))

 ̸= 0

would have at most d roots (and so the random challenge r should be among
those roots). Thus, the proof system is sound, with a soundness error of

1

qµ
+

(
1− 1

qµ

)
· d
N

.
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Moreover, assuming that the commitment scheme is hiding, we can observe that
the interactive proof is zero-knowledge since

– revealing Q(X) leaks no information about the secret thanks to the random
polynomial P0, and

– revealing one evaluation of the polynomials P1, . . . , Pn leaks no information
about the leading term thanks to the randomness used to build those poly-
nomials.

In our setting of the Mirath signature scheme, Fqµ might be a small field,
so it would lead to a relatively bad soundness error. To solve this issue, we
just repeat Step 2 of the proof system ρ times in parallel: the verifier chooses a
random matrix Γ ∈ Fρ×m

qµ and then the prover reveals ρ polynomials Q1, . . . , Qρ

such that

Qk(X) = P0,k(X) +

m∑
j=1

Γ k,j · f [h]
j (X,P1(X), . . . , Pn(X))

where P0,1, . . . , P0,ρ are ρ random degree-(d − 1) polynomials that have been
committed in the previous step. In that case, the soundness error is now

1

qµ·ρ
+

(
1− 1

qµ·ρ

)
· d
N

.

Remark 1. Using the above tweak, when taking ρ such that ρ ·µ · log2 q ≥ λ, the
soundness error is roughly d/N . When N is small (compared to 2λ), we would
need to repeat the zero-knowledge protocol several times to achieve the desired
security level. One solution could be that the verifier checks the polynomial
relation (1) into several points instead of a single one. If the verifier checks
the relation into ℓ points, the prover needs to sample P1, . . . , Pn as degree-ℓ
polynomials to preserve zero-knowledge, and the soundness error would be

1

qµ·ρ
+

(
1− 1

qµ·ρ

)
·
(
d·ℓ
ℓ

)(
N
ℓ

) .
By taking ℓ such the soundness error is directly negligible, we would not need
to rely on parallel repetitions. However, the techniques we would like to use to
commit to polynomials are based on GGM trees and do not scale well if we want
to open several evaluations. We would need to use techniques based on Merkle
trees (e.g. TCitH-MT [24]), but the signature size would be larger than 6 kB
(for the first security level).

In what follows, we describe how to commit polynomials such that we can
later open some evaluations.

The TCitH-GGM Approach. The TCitH framework [24] shows that we can com-
mit n̄ random polynomials using seed trees thanks to ideas from [31,15]. Here is
the commitment process for degree-1 polynomials:
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1. One uses an all-but-one vector commitment (AVC) to sample and commit
N seeds seed1, . . . , seedN .

2. One expands each seedi as wrnd,i := PRG(seedi) ∈ Fn̄
q for i ∈ {1, . . . , N},

where PRG is a pseudorandom generator.
3. One computes

wacc ←
N∑
i=1

wrnd,i ∈ Fn̄
q

wbase ← −
N∑
i=1

ϕ(i) · wrnd,i ∈ Fn̄
qµ

where ϕ : {1, . . . , N} → Fqµ is a public one-to-one function.
4. One reveals the auxiliary value aux := w − wacc.
5. One defines Pj as

Pj(X) = wj ·X + (wbase)j

for all j.

This commitment procedure has the main advantage to enable the prover to
reveal one evaluation {Pj(ϕ(i

∗))}j for i∗ ∈ {1, . . . , N} while keeping secret the
coefficient w and wbase: they just need to reveal all the {seedi}i except seedi∗ (by
opening the AVC scheme) and the verifier will be able to compute Pj(ϕ(i

∗)) as

ϕ(i∗) · auxj +
N∑

i=1,i̸=i∗

(ϕ(i∗)− ϕ(i)) · (wrnd,i)j with wrnd,i := PRG(seedi).

Indeed, we have that

ϕ(i∗) · auxj+
N∑

i=1,i̸=i∗

(ϕ(i∗)− ϕ(i)) · (wrnd,i)j

= ϕ(i∗) ·

(
auxj +

N∑
i=1

(wrnd,i)j

)
−

N∑
i=1

ϕ(i) · (wrnd,i)j

= ϕ(i∗) · (auxj + (wacc)j) + (wbase)j

= ϕ(i∗) · wj + (wbase)j = Pj(ϕ(i
∗))

Using this commitment procedure, the zero-knowledge protocol has 5 rounds,
and one needs to rely on protocol repetitions to achieve the desired security.
Indeed, the computational complexity is linear in N and so we can not take N
exponentially large. To have a λ-bit security we need to repeat the protocol τ
times in parallel, such that (d/N)

τ ≤ 2−λ, assuming that q−µ·ρ is negligible.

The VOLEitH Approach. As the TCitH framework, the VOLEitH approach

starts by committing τ sets of polynomials {P (1)
i }i, . . . , {P

(τ)
i }i in parallel. How-

ever, instead of considering those sets of polynomials individually as the TCitH
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framework, the VOLEitH framework [9] consists in “merging them” into poly-
nomials for which we will be able to open Nτ evaluations. This merge introduces
an additional round in the proof system, leading to a 7-round proof system with
soundness error

1

2µ·ρ
+

(
1− 1

2µ·ρ

)
· d

Nτ
.

This approach is used to construct a variant of Mirath described in Appendix A.

3.2 Dual Support Modeling

The Mirath signature scheme is built from a zero-knowledge proof of knowledge
for a solution to a MinRank instance. We rely on the proof system described
in the previous section. This scheme enables us to prove the knowledge of a
witness satisfying some degree-d polynomial constraints, so we should write the
MinRank problem as a system of degree-d polynomial equations.

Instead of relying on the standard MinRank problem, Mirath uses the Dual
Support Modeling from [12], which relies on the equivalent MinRank Syndrome
problem. In this setting, the protocol aims at verifying that a matrixE is solution
of the constraints {

H vec(E) = y,

rank(E) ≤ r

for a given matrix H ∈ F(mn−k)×mn
q and a given vector y ∈ Fmn−k

q , where vec(·)
returns a flatten version of the input matrix. The modeling consists in viewing
E as a product of two matrices, E = SC, with S ∈ Fm×r

q and C ∈ Fr×n
q .

Furthermore, the modeling specializes the matrix C as
[
Ir C ′] for some matrix

C ′ ∈ Fr×(n−r)
q . Therefore, we use the proof system to prove that we know the

witness (S,C′) which satisfy the following quadratic constraints (d = 2):

H vec(SC) = y with C =
[
Ir C ′] .

3.3 Mirath Protocol

Let us now express the proof system in the specific case of the Mirath scheme, i.e.
specialize the proof system described in Section 3.1 for the MinRank modeling
of Section 3.2:

1. The prover begins by sampling random degree-1 polynomials PS = S ·X +
Sbase and PC′ = C ′ ·X+C ′

base, where Sbase and C ′
base are randomly sampled

from Fm×r
qµ and Fr×(n−r)

qµ respectively. He also samples a random degree-1
polynomial Pv = v ·X + vbase where v ∈ Fρ

qµ and vbase ∈ Fρ
qµ . He commits

to those polynomials.

2. The verifier chooses a random matrix Γ ∈ Fρ×(mn−k)
qµ and sends it to the

prover. The latter reveals the degree-1 polynomial Pα(X) defined as

Pα(X) = Pv(X) + Γ ·
(
H · vec(PE(X))− y ·X2

)
∈ (Fqµ [X])

ρ
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with
PE(X) = PS(X) · [PIr (X) ∥ PC′ ] ∈ (Fqµ [X])

m×n
,

where PIr := Ir ·X ∈ (Fqµ [X])
r×r

.
3. The verifier samples a random evaluation point r from a public subset

S ⊂ Fqµ of size N and sends it to the prover. The latter then reveals the
evaluations Seval := PS(r), C

′
eval := PC′(r) and veval := Pv(r), together with

a proof π that the evaluations are consistent with the commitment.

4. The verifier checks that the revealed evaluations are consistent with the
commitment using π and check that we have

Pα(r) =? veval + Γ ·
(
H · vec(Eeval)− y · r2

)
∈ Fρ

qµ

with
Eeval = Seval · [r · Ir ∥ C ′

eval].

Committing to Witness Polynomials. In the above proof system, we need
to commit three polynomials:

– The witness polynomial PS = S ·X + Sbase encoding the secret S;
– The witness polynomial PC′ = C′ ·X +C′

base encoding the secret C′;
– The masking polynomial Pv = v · X + vbase, which aims to avoid leakage

through Pα.

To commit them, we use the TCitH approach as explained in Section 3.1:

1. We use an all-but-one vector commitment (AVC) to sample and commit N
seeds seed1, . . . , seedN .

2. One expands each seedi as

(Srnd,i,C
′
rnd,i,vrnd,i) := PRG(seedi) ∈ Fm×r

q × Fr×(n−r)
q × Fρ×1

qµ

for all i ∈ {1, . . . , N}.
3. One computes

(Sacc,C
′
acc,vacc)←

(
N∑
i=1

Srnd,i,

N∑
i=1

C′
rnd,i,

N∑
i=1

vrnd,i

)

(Sbase,C
′
base,vbase)←

(
−

N∑
i=1

ϕ(i) · Srnd,i, −
N∑
i=1

ϕ(i) ·C′
rnd,i, −

N∑
i=1

ϕ(i) · vrnd,i

)

with (Sacc,C
′
acc,vacc) ∈ Fm×r

q × Fr×(n−r)
q × Fρ×1

qµ and (Sbase,C
′
base,vbase) ∈

Fm×r
qµ × Fr×(n−r)

qµ × Fρ×1
qµ .

4. One reveals the auxiliary value aux := (Saux,C
′
aux) with Saux := S − Sacc

and C′
aux = C′ − C′

acc). Since v is a random vector (which is not part of
the witness, it aims to mask the polynomial Pα), we do not need to rely on
auxiliary value, we just define v as vacc (it is equivalent to say that vaux := 0).
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5. One defines PS , PC′ and Pv respectively as S ·X +Sbase, C
′ ·X +C′

base and
v ·X + vbase.

Then, to open the evaluations Seval := PS(ϕ(i
∗)),C′

eval := PC′(ϕ(i∗)) and veval :=
Pv(ϕ(i

∗)), the prover just reveals all the seeds {seedi}i except seedi∗ and the
verifier will be able to compute Seval, C

′
eval and veval as

Seval = ϕ(i∗) · Saux +

N∑
i=1,i̸=i∗

(ϕ(i∗)− ϕ(i)) · Srnd,i

C′
eval = ϕ(i∗) ·C′

aux +

N∑
i=1,i̸=i∗

(ϕ(i∗)− ϕ(i)) ·C′
rnd,i

veval =

N∑
i=1,i̸=i∗

(ϕ(i∗)− ϕ(i)) · vrnd,i

with (Srnd,i,C
′
rnd,i,vrnd,i) := PRG(seedi).

One-Tree Optimization. Here above, we described how to commit the polyno-
mials PS , PC′ and Pv such that the prover can later open one evaluation. In
practice, we perform this commitment phase τ times in parallel. It implies that
we use τ all-but-one vector commitments, where each of them uses of GGM tree
of N leaves. Therefore, we can optimize those all-but-one vector commitments by
using a so-called batched all-but-one vector commitment (BAVC) scheme, which
aims to be more efficient than τ independent AVC schemes. In Mirath, we use
the BAVC scheme described in [8], which proposes the “one-tree” optimization.
Instead of considering τ independent GGM trees of N leaves in parallel, the
authors propose to rely on a unique large GGM tree of τ · N leaves where the
ith seed of the eth parallel repetition is associated to the (e · N + i)th leaf of
the large GGM tree. As explained in [8], “opening all but τ leaves of the big
tree is more efficient than opening all but one leaf in each of the τ smaller trees,
because with high probability some of the active paths in the tree will merge
relatively close to the leaves, which reduces the number of internal nodes that
need to be revealed.” Moreover, the authors of [8] further propose to improve
the previous approach using the principle of grinding. When the BAVC opening
is such that the number of revealed nodes in the revealed sibling paths exceeds
a chosen threshold Topen, the opening is considered as a failure (i.e. it returns
⊥), forcing the prover/signer recomputing another opening challenge by hashing
with an incremented counter. This process is done until the number of revealed
nodes is less than Topen. For example, if we consider N = 256 and τ = 16,
the number of revealed nodes is smaller than (or equal to) Topen := 110 with
probability ≈ 0.2. The selected value of Topen induces a rejection probability
prej = 1 − 1/θ, for some θ ∈ (0,∞), and the signer hence needs to perform an
average of θ hash computations for the opening challenge (instead of 1). While
this strategy decreases the challenge space by a factor θ, it does not change the
average number of hashes that must be computed to succeed an forgery attack
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against the signature scheme (since the latter is multiplied by θ). As noticed
by the authors of [8], this strategy can be thought of as loosing log2 θ bit of
security (because of a smaller challenge space) which are regained thanks to a
proof-of-work (performing an average of θ hash computations before getting a
valid challenge).

PIOP Computation. We now describe in more details the computation per-
formed over the committed polynomials, namely the computation of Pα for the
prover and the computation of Pα(r) for the verifier.

Prover’s Computation. We detail here after the computation of the prover to
build the polynomial PE and the polynomial Pα(X). Let us denote PE := E ·
X2 +Emid ·X +Ebase and Pα := α ·X2 + αmid ·X + αbase. The prover should
compute PE(X) := PS(X) · [PIr (X) ∥ PC′ ], meaning that he should compute

E := [S ∥ S ·C ′]

Emid := [Sbase ∥ Sbase ·C ′ + S ·C ′
base]

Ebase := [0m×r ∥ Sbase ·C ′
base].

Then, the prover should compute the polynomial

Pα(X) := Pv(X) + Γ ·
(
(Im·n−k ∥H ′) · vec(PE(X))− y ·X2

)
,

meaning that he should compute

α := Γ · ((Im·n−k ∥H ′) · vec(E)− y)

αmid := Γ · (Im·n−k ∥H ′) · vec(Emid) + v

αbase := Γ · (Im·n−k ∥H ′) · vec(Ebase) + vbase.

Let us remark that, by design, α is always zero so the prover does not need to
compute it (by design, the polynomial Pα is of degree at most 1). Therefore, the
prover does not need to compute E: he just need to compute Emid and Ebase to
build Pα(X) := αmid ·X +αbase.

Verifier’s Computation. We detail here after the computation of the verifier to
build the evaluations Eeval := PE(r) and αeval := Pα(r). The verifier should
compute

Eeval := PE(r)

= [PS(r)PIr (r) ∥ PS(r)PC′(r)]

= [Seval · r ∥ Seval ·C ′
eval] ,

together with

αeval := Pα(r)

= Pv(r) + Γ ·
(
(Im·n−k ∥H ′) · vec(PE(r))− y · r2

)
= veval + Γ ·

(
(Im·n−k ∥H ′) · vec(Eeval)− y · r2

)
.
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Fiat-Shamir Transformation & Grinding. To obtain the Mirath signature
scheme from the Mirath protocol, we rely on the Fiat-Shamir transformation [26]
to remove the prover-verifier interactions. Each verifier’s challenge is computed
as the output of an extendable-output function (XOF) which takes as input the
data that the prover would send before receiving that challenge in an interactive
protocol. The Mirath protocol is a 5-round proof system, so there are two chal-
lenges: the randomness Γ involved in the definition of Pα, and the evaluation
points onto which all the polynomials are evaluated. Since the signature scheme
is the non-interactive variant of a 5-round protocol repeated τ times in parallel,
the scheme is affected by the attack of Kales and Zaverucha [32]. To avoid incre-
menting the number τ of parallel protocol repetitions (to have a secure scheme),
we draw the first challenge from an exponentially-large set. Therefore, this chal-
lenge might be the same across all the parallel repetitions. Using this strategy, to
have a secure scheme, q−µ·ρ and (2/N)τ should be negligible. In Mirath scheme,
we also use a (explicit) proof-of-work to the Fiat-Shamir hash computation of
the last challenge, as proposed in [8]. Together with the opening challenge, the
signer samples a w-bit value vgrinding and keeps the opening challenge only if
this additional value is zero, with w a parameter of the scheme. If this addi-
tional value is not zero, then the signer increments a counter and recompute an
other opening challenge with an other w-bit value, and he repeats the process
until the grinding value is zero. Let us remark that we can use the same counter
for this grinding process and the grinding process due to the fact that the [8]’s
BAVC scheme might return ⊥ when the number of revealed nodes is larger than
the chosen threshold Topen. This strategy increases the cost of hashing the last
challenge by a factor 2w and hence increases the security of w bits. This thus
allows to take smaller parameters (N, τ) for the large tree, namely parameters
achieving λ−w bits of security instead of λ. More precisely, the parameters N ,
τ and w will be chosen such that (2/N)τ · 2−w ≤ 2−λ to achieve a λ-bit security.

We describe the resulting signature scheme in Algorithms 1 and 2. We added
a random salt to have a domain separation between signatures. Let us remark
that Mirath uses standard techniques to optimize the signature size: instead of
including all the prover’s sent data, the signature only contains minimal infor-
mation that enables the verifier to recompute the prover’s sent data and will
check if the Fiat-Shamir hashes are consistent with the recomputed data. More
precisely,

– Instead of including the evaluations Seval, C
′
eval and veval, the signature in-

cludes information (data enabling to derive {seedi}i ̸=i∗ and the auxiliary
value (Saux,C

′
aux)) that enables the verifier to derive them.

– Instead of including the polynomial Pα := αmid · X + αbase, the signature
only contains αmid. Then, using αeval := Pα(ϕ(i

∗)) and αmid, the verifier will
be able to recompute αbase.
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Public key: A syndrome MinRank instance (H,y).

Secret key: Two matrices S ∈ Fm×r
q and C′ ∈ Fr×r(n−r)

q satisfying H vec(S · [Ir ∥ C′]) = y.

Step 0: Initialization

1. Uncompress the public and secret keys (if they are in a compressed form).

2. Sample a random salt
$←− {0, 1}2λ.

Step 1: Build & Commit to Witness Polynomials

3. Using a (salted) BAVC, derive τ sets of N seeds {seed(e)1 , . . . , seed
(e)
N }e with their commitment digest

hcom.

4. For each iteration e ∈ [1, . . . , τ ]:

(a) For all i ∈ [1, . . . , N ], expand each seed seed
(e)
i as (S

(e)
rnd,i,C

′(e)
rnd,i,v

(e)
rnd,i).

(b) Compute S
(e)
acc =

∑N
i=1 S

(e)
rnd,i, C

′(e)
acc =

∑N
i=1 C

′(e)
rnd,i, and v

(e)
acc =

∑N
i=1 v

(e)
rnd,i.

(c) Compute S
(e)
base = −

∑N
i=1 ϕ(i)·S

(e)
rnd,i,C

′(e)
base = −

∑N
i=1 ϕ(i)·C

′(e)
rnd,i, and v

(e)
base = −

∑N
i=1 ϕ(i)·v

(e)
rnd,i.

(d) Compute S
(e)
aux = S − S

(e)
acc and C′(e)

aux = C′ −C′(e)
acc , and set v(e) as v

(e)
acc .

5. Compute hsh = Hash1(hcom, (S
(e)
aux ,C

′(e)
aux )e∈[1,...,τ ])

Step 2: Compute the polynomial proof Pα(X)

6. Sample Γ
$←− PRG(hsh) where Γ ∈ Fρ×mn−k

qµ .

7. For each iteration e ∈ [1, . . . , τ ]:

(a) Compute P
(e)
E (X) by computing

E
(e)
mid := [S

(e)
base ∥ S

(e)
base ·C

′(e) + S(e) ·C′(e)
base ],

E
(e)
base := [0m×r ∥ S(e)

base ·C
′(e)
base ].

(b) Compute the polynomial P
(e)
α := α

(e)
mid ·X +α

(e)
base by computing

α
(e)
mid := Γ · (Im·n−k ∥H ′) · vec(E(e)

mid) + v(e),

α
(e)
base := Γ · (Im·n−k ∥H ′) · vec(E(e)

base) + v
(e)
base.

8. Compute hpiop = Hash2
(
pk, salt,msg, hsh, (α

(e)
mid,α

(e)
base)e∈[1,...,τ ]

)
.

Step 3: Open Random Evaluations

9. Set ctr := 0.

10. Sample
(
{i∗(e)}e, vgrinding

)
$←− PRG(hpiop, ctr) where i∗(e) ∈ [1, . . . , N ] for all e ∈ [1, . . . , τ ] and

vgrinding ∈ {0, 1}w.
11. Compute the BAVC’s opening proof πBAVC for {seedei}e,i̸=i∗(e) .

12. If vgrinding ̸= 0 or πBAVC = ⊥, increment ctr and go to Step 10.

13. Output the signature σ =

(
salt | ctr | hpiop | πBAVC |

(
S

(e)
aux ,C

′(e)
aux,α

(e)
mid

)
e∈[1,...,τ ]

)
.

Algorithm1. High level description of Mirath Sign algorithm
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Public key: A syndrome MinRank instance (H,y).

Step 0: Initialization

1. Uncompress the public key (if it is in a compressed form).

2. Parse the signature as

(
salt | ctr | hpiop | πBAVC |

(
S

(e)
aux ,C

′(e)
aux,α

(e)
mid

)
e∈[1,...,τ ]

)
.

Step 1: Computing Opened Evaluations

3. Sample
(
{i∗(e)}e, vgrinding

)
$←− PRG(hpiop, ctr) where i∗(e) ∈ [1, . . . , N ] for all e ∈ [1, . . . , τ ] and

vgrinding ∈ {0, 1}w.
4. Using πBAVC and {i∗(e)}e, recover {seedei}e,i̸=i∗(e) with the reconstruction algorithm of the BAVC

scheme, together with the commitment digest hcom.

5. For each iteration e ∈ [1, . . . , τ ]:

(a) For all i ∈ [1, . . . , N ]\{i∗(e)}, expand each seed seed
(e)
i as (S

(e)
rnd,i,C

′(e)
rnd,i,v

(e)
rnd,i).

(b) Compute

S
(e)
eval = ϕ(i∗

(e)
) · S(e)

aux +

N∑
i=1,i ̸=i∗(e)

(ϕ(i∗
(e)

)− ϕ(i)) · S(e)
rnd,i

C
′(e)
eval = ϕ(i∗

(e)
) ·C′(e)

aux +

N∑
i=1,i ̸=i∗(e)

(ϕ(i∗
(e)

)− ϕ(i)) ·C′(e)
rnd,i

v
(e)
eval =

N∑
i=1,i ̸=i∗(e)

(ϕ(i∗
(e)

)− ϕ(i)) · v(e)
rnd,i .

6. Compute hsh = Hash1(hcom, (S
(e)
aux ,C

′(e)
aux )e∈[1,...,τ ])

Step 2: Recompute the polynomial proof Pα(X)

7. Sample Γ
$←− PRG(hsh) where Γ ∈ Fρ×mn−k

qµ .

8. For each iteration e ∈ [1, . . . , τ ]:

(a) Compute the evaluation E
(e)
eval := P

(e)
E (ϕ(i∗(e))) as

E
(e)
eval = [S

(e)
eval · ϕ(i

∗(e)) ∥ S(e)
eval ·C

′(e)
eval ].

(b) Compute the evaluation α
(e)
eval := P

(e)
α (ϕ(i∗(e))) as

α
(e)
eval = veval + Γ ·

(
(Im·n−k ∥H ′) · vec(E(e)

eval)− y · ϕ(i∗(e))2
)
.

(c) Deduce α
(e)
base as

α
(e)
base = α

(e)
eval −α

(e)
mid · ϕ(i

∗(e)).

9. Compute h′
piop = Hash2

(
pk, salt,msg, hsh, (α

(e)
mid,α

(e)
base)e∈[1,...,τ ]

)
.

Step 3: Verification

10. Check that h′
piop =? hpiop and vgrinding = 0.

Algorithm2. High level description of Mirath Verify algorithm
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4 Detailed Description of Mirath

4.1 Notations

We let y ← A(x) denote the operation that runs algorithm A on input x and as-
signs the output to the variable y. The notation a += b means that to the variable
a it is assigned the value a+ b, where the addition is performed component-wise
if a and b are tuples. We employ arrays, and we let a[i] denote the ith element
of the array a. The main variable names employed in the algorithms are collected
in Table 2.

Vectors and Matrices:

E Fm×n
q Matrix solution of the Dual Support Modeling.

S,C′ Fm×r
q ,Fr×(n−r)

q Matrices of the secret key: E = S[Ir C′].

H ′ F(m·n−k)×k
q Matrix of the public key.

y F(mn−k)×k
q Vector of the public key: [Imn−kH

′] vec(E) = y.

v Fρ×1
qµ Random masking vector.

Γ Fρ×(mn−k)
qµ Challenge matrix.

ϕ(i∗) Fqµ Evaluation points from the second challenge {i∗[e]}e<τ .

Seeds and Salt:

seedpk {0, 1}λ Seed for the generation of the matrix H ′ of the public key.

seedsk {0, 1}λ Seed for the generation of the matrices S,C′ of the secret key.

tree {0, 1}2λτN−1 Binary tree of seeds.

rseed {0, 1}λ Root seed of tree.
seeds {0, 1}λτN Leaf seeds of tree.
salt {0, 1}λ Salt for domain separation between signatures.

Other Variables:

msg {0, 1}∗ Message to be be signed.

commit {0, 1}2λτN Commitments of seeds.
key {0, 1}4λτN−1 tree ∥ commit.
path {0, 1}λ·Topen Opening of the BAVC leaves in tree.
commiti∗ {0, 1}2λτ Commitments of the unopened BAVC leaves in tree.

πBAVC {0, 1}λ(Topen+2τ) path ∥ commiti∗ .
hcom {0, 1}2λ Seed commitment (hash digest of commit).
hsh {0, 1}2λ Commitment of the witness polynomials.

hpiop {0, 1}2λ Polynomial proof commitment.
ctr {0, 1}64 Counter for grinding and proof-of-work optimizations.
σ {0, 1}∗ Signature output by the signing algorithm.

Table 2. Algorithmic notation.
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4.2 Finite Fields Representation

Elements in Fq. Mirath proposes parameters for our scheme over the fields F2

and F16. Every element in F16 is represented by a degree-3 binary polynomial
a3x

3+a2x
2+a1x+a0. An element a3x

3+a2x
2+a1x+a0 ∈ F16 is stored as the

four-bit integer a3 ·23+a2 ·22+a1 ·2+a0. The multiplication of two elements is
implemented as a polynomial multiplication performed modulo f(x) = x4+x+1.

Elements in Fqµ . Every element in Fqµ is represented by a degree-(µ − 1)
polynomial aµ−1x

µ−1 + · · · + a1x + a0, where a0, . . . , aµ−1 ∈ Fq. We store an
element aµ−1x

µ−1+· · ·+a1x+a0 ∈ Fqµ as the integer with binary representation

bin(aµ−1) ∥ bin(aµ−2) ∥ · · · ∥ bin(a1) ∥ bin(a0),

where bin(ai) is the binary representation of ai ∈ Fq. We use (µ log q) bits to
store a single Fqµ-element. The multiplication of two elements in Fqµ is imple-
mented as a polynomial multiplication modulo an irreducible polynomial f(x),
where f(x) is chosen as given in Table 3.

q µ f(x)

2 8 x8 + x4 + x+ 1
2 11 x11 + x2 + 1
2 12 x12 + x3 + 1

16 2 x2 + x+ 1
16 3 x3 + x+ 1

Table 3. Polynomial modulus f(x) for multiplications in Fqµ .

4.3 Matrices Representation

The entries of a matrix are stored in column-major order using byte arrays.
In this subsection, Mj denotes the j-th column of a matrix M . In addition,
p = 8/ log q defines the maximum number of Fq elements that can be stored in
one byte.

Matrices over Fq. An matrix M ∈ Fnr×nc
q is represented as a byte-array

M of length nbc · nc, where nbc = ⌈nr log q/8⌉. This array is represented as
M = M0 ∥ M1 ∥ · · · ∥ Mnc−1, where each Mj is a byte-array of length nbc storing the
column Mj as it is explained below.

First suppose

Mj =


a0
a1
...

anr−1

 ∈ Fnr
q .
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Given 0 ≤ i ≤ nbc − 2. The i-th byte Mj[i] in the byte array Mj stores the p
entries ap·i, ap·i+1, . . . , ap·i+p−1 by defining

Mj[i] = bin(ap·i+p−1) ∥ bin(ap·i+p−2) ∥ · · · ∥ bin(ap·i+1) ∥ bin(ap·i),

where bin(a) is the binary representation of a ∈ Fq. The last byte Mj[nbc − 1]
in Mj stores the last p′ = nr mod p entries anr−1−p′ , . . . , anr−1 of Mj , that is,

Mj[nbc − 1] = 0 ∥ bin(ap(nbc−1)+p′−1) ∥ · · · ∥ bin(ap(nbc−1)+1) ∥ bin(ap(nbc−1)),

where 0 denotes a bit array of (8− p′ · log q) zeros.

Matrices over Fq from byte arrays. Algorithm 1 describes how to transform
a byte array A into a matrix in Fnr×nc

q .

Algorithm 1 Transform a byte array into a matrix in Fnr×nc .

SetToMatrix(A,Fnr×nc)

1 : p← 8/ log q ▷ Maximun number of elements stored in one byte.

2 : mask← 255

3 : if F = Fq then

4 : nbc ← ⌈nr/p⌉ ▷ Number of bytes used to store one column.

5 : a← nr mod p

6 : if a > 0 then

7 : mask← ⌊mask/2(p−a)·log q⌋
8 : for j from 1 to nc do

9 : A[j · nbc − 1]← A[j · nbc − 1]⊗mask ▷ ⊗ means bitwise multiplication

10 : if F = Fqu then

11 : nbe ← ⌈µ/p⌉ ▷ Number of bytes used to store one Fqµ element.

12 : a← µ mod p

13 : if a > 0 then

14 : mask← ⌊mask/2(p−a)·log q⌋
15 : for j from 0 to ncnr − 1 do

16 : A[j · nbe]← A[j · nbe]⊗mask ▷ ⊗ means bitwise multiplication

17 : return A

Matrices over Fqµ . An element M ∈ Fnr×nc
qµ is represented as a byte array M

of length nbc · nc, where nbc = ⌈µ log q/8⌉nr. The (i, j) entry of M is stored in
the s = ⌈µ log q/8⌉ bytes M[nbc · j+s · i], . . . , M[nbc · j+s · i+s−1] as explained
in Section 4.2.
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Parsing of matrices over Fq and Fqµ from byte arrays. Algorithm 2
describes how we pack in Mirath a matrix defined over Fq or Fqµ into a byte
array. Algorithm 3 gives the way the matrix is unpacked back. In the description
of these two algorithms, we assume that the copying from the matrix or the bytes
array is done bit by bit. Algorithm 2 is used in UnparseSignature and Algorithm 3
is used in ParseSignature.

Algorithm 2 Unparse matrix.

UnparseMatrix(A,M , ib,Fnr×nc)

1 : if F = Fq then

2 : nbc ← 8⌈nr log q/8⌉
3 : for j from 0 to (nc − 1) do

4 : A[ib, ib + nr log q − 1]←M [j · nbc, j · nbc + nr log q − 1] ▷ Bit-to-bit copy

5 : ib += nr log q

6 : if F = Fqµ then

7 : nbr ← 8⌈log qµ/8⌉
8 : nbc ← nbr · nr

9 : for j from 0 to (nc − 1) do

10 : for i from 0 to (nr − 1) do

11 : A[ib, ib + log qµ − 1]←M [j · nbc + i · nbr, j · nbc + i · nbr + log qµ − 1]

12 : ib += log qµ

13 : return A, ib

4.4 Hash Functions and Commitments

Hash Functions. Several routines in Mirath involve cryptographic hashing.
These routines all use a common cryptographic hash function Hash : {0, 1}∗ →
{0, 1}2λ. For the sake of simplicity, we write Hash(obj1, obj2, . . . ) as a shortcut
for the hashing of a binary string obtained by concatenating the binary strings
representing the objects obj1, obj2, . . . . These hash functions are implemented
using SHA3-λ along with domain separation as follows:

Hash1(data) := Hash(1, data)

Hash2(data) := Hash(2, data)

Hash3(data) := Hash(3, data)

where each of the prefix 1, 2, and 3 is encoded in one byte.

Hash1 is used in CommitWitnessPolynomials and ComputeEvaluations. Hash2 is
used in Sign and Verify. Hash3 is used in BAVC.Commit and BAVC.Reconstruct.
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Algorithm 3 Parse matrix.

ParseMatrix(A, ib,Fnr×nc)

1 : if F = Fq then

2 : nbc ← 8⌈nr log q/8⌉
3 : M ← 0(nbc·nc) ▷ An array of (nbc · nc) zero bytes

4 : for j from 0 to (nc − 1) do

5 : M [j · nbc, j · nbc + nr log q − 1]← A[ib, ib + nr log q − 1] ▷ Bit-to-bit copy

6 : ib += nr log q

7 : if F = Fqµ then

8 : nbr ← 8⌈log qµ/8⌉
9 : nbc ← nbr · nr

10 : M ← 0(nbc·nc) ▷ An array of (nbc · nc) zero bytes

11 : for j from 0 to (nc − 1) do

12 : for i from 0 to (nr − 1) do

13 : M [j · nbc + i · nbr, j · nbc + i · nbr + log qµ − 1]← A[ib, ib + log qµ − 1]

14 : ib += log qµ

15 : return M , ib

4.5 Randomness Generation and Sampling

Random Objects. TRG.Seed(λ) returns a random binary string of length λ.
It is instantiated using the NIST provided randombytes function, which returns
⌈λ/8⌉ bytes from the system entropy. This functionality is notably used to gen-
erate the public key and secret key seeds.

Pseudorandom Objects. Several algorithms used in Mirath require the gener-
ation of pseudorandom objects. These objects are generated from pseudorandom
bytes produced with a PRG based on a block cipher Encrypt-λ or the XOF Shake.

Encrypt-λ(key,msg) output the encryption c ∈ {0, 1}λ of the block msg ∈
{0, 1}λ using the key key ∈ {0, 1}λ. The selection of the particular block ci-
pher depends on the security level. In Mirath Encrypt-128 = AES-128 and
Encrypt-λ = Rijndael-λ for λ = 192, 256. This functionality is used in Algo-
rithm 4 and Algorithm 5.

Shake is an extendable-output function [17]. It consists of the initialization
function Shake.Init that returns a new instance of the Shake object prg, an ab-
sorbing function Shake.Absorb(prg, string) that returns the updated shake in-
stance prg after absorbing the string of bits string, and a squeeze function
Shake.Squeeze(prg, nb) that returns the updated shake instance prg and a string
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of nb pseudorandom bytes.

Algorithm 4 Children nodes generation.

ExpandSeeda(salt, seed, idx)

1 : salt0 ← salt[0, λ] ▷ First λ bits in salt.

2 : msg0 ← salt0 ⊕ (binλ−40(a) ∥ bin32(idx) ∥ bin8(0))
3 : msg1 ← salt0 ⊕ (binλ−40(a) ∥ bin32(idx) ∥ bin8(1))
4 : ▷ binx(i) is the x-bit representation of i.

5 : seedl ← Encrypt-λ(seed,msg0)

6 : seedr ← Encrypt-λ(seed,msg1)

7 : return (seedl, seedr)

ExpandSeeda(salt, seed, idx) returns a pseudorandom element in {0, 1}λ×{0, 1}λ
built from a salt salt ∈ {0, 1}128, a seed seed ∈ {0, 1}λ and a nonnegative in-
teger idx < N . It is described in Algorithm 4, and used in BAVC.Commit and
BAVC.Reconstruct.

Algorithm 5 Pseudorandom element in Fm×r
q × Fr×(n−r)

q × Fρ×1
qµ .

ExpandSeedShares(salt, seed)

1 : salt0 ← salt[0, λ] ▷ First λ bits in salt.

2 : p← 8/ log q

3 : nbs ← ⌈m/p⌉r ▷ Number of bytes to store Srnd ∈ Fm×r
q .

4 : nbc ← ⌈r/p⌉ · (n− r) ▷ Number of bytes to store Crnd ∈ Fr×(n−r)
q .

5 : nbv ← ⌈µ/p⌉ρ ▷ Number of bytes to store vrnd ∈ Fρ×1
qµ .

6 : nb← nbs + nbc + nbv

7 : nenc← ⌈nb · 8/λ⌉
8 : A← ∅
9 : for i from 0 to nenc− 1 do

10 : A← A ∥ Encrypt-λ(seed, salt0 ⊕ binλ(i))

11 : ▷ binλ(i) is the λ-bit representation of i.

12 : Srnd ← SetToMatrix((A[0], . . . , A[nbs − 1]),Fm×r
q )

13 : C′
rnd ← SetToMatrix((A[nbs], . . . , A[nbs + nbc − 1]),Fr×(n−r)

q )

14 : vrnd ← SetToMatrix((A[nbs + nbc] ∥ · · · ∥ A[nb− 1]),Fρ×1
qµ )

15 : return (Srnd,C
′
rnd,vrnd)
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ExpandSeedShares(salt, seed) returns a pseudorandom element in Fm×r
q ×Fr×(n−r)

q ×
Fρ×1
qµ that is generated from a salt salt ∈ {0, 1}128 and a seed seed ∈ {0, 1}λ. Al-

gorithm 5 describes this routine, which is used during signing and verification
within CommitWitnessPolynomials and ComputeEvaluations, respectively.

Algorithm 6 Routine ExpandSeedPublicMatrix.

ExpandSeedPublicMatrix(seedpk)

1 : p← 8/ log q

2 : nb← ⌈(mn− k)/p⌉k ▷ Number of bytes to store H
′ ∈ F(mn−k)×k

q .

3 : prg← Shake.Init()

4 : prg← Shake.Absorb(prg, seedpk)

5 : H← Shake.Squeeze(prg, nb)

6 : H ′ ← SetToMatrix(H,F(mn−k)×k
q )

7 : return H ′

ExpandSeedPublicMatrix(seedpk) returns the matrix H ′ ∈ F(mn−k)×k
q which is

expended from a seed seedpk. It is described in Algorithm 6, and it is used in
KeyGen and Verify within the DecompressPK function.

Algorithm 7 Routine ExpandSeedSecretMatrices.

ExpandSeedSecretMatrices(seedsk)

1 : p← 8/ log q

2 : nbs ← ⌈m/p⌉r ▷ Number of bytes to store S ∈ Fm×r
q .

3 : nbc ← ⌈r/p⌉ · (n− r) ▷ Number of bytes to store C
′ ∈ Fr×(n−r)

q .

4 : nb← nbs + nbc

5 : prg← Shake.Init()

6 : prg← Shake.Absorb(prg, seedsk)

7 : SC← Shake.Squeeze(prg, nb)

8 : S ← SetToMatrix((SC[0], . . . , SC[nbs − 1]),Fm×r
q )

9 : C′ ← SetToMatrix((SC[nbs], . . . , SC[nb− 1]),Fr×(n−r)
q )

10 : return (S,C′)

ExpandSeedSecretMatrices(seed) returns the secret matrices S ∈ Fm×r
q and C ′ ∈

Fr×(n−r)
q . It is used in KeyGen and Sign within the DecompressSK function that
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also returns the matrices H ′ ∈ F(mn−k)×k
q and the public key pk.

Algorithm 8 Expand challenge evaluation points.

ExpandChallengeEvaluationPoints(h, ctr)

1 : nbits← (τ · logN) + w

2 : nb← ⌈nbits/8⌉
3 : prg← Shake.Init()

4 : prg← Shake.Absorb(prg, h ∥ bin64(ctr))
5 : rnd← Shake.Squeeze(prg, nb)

6 : for e from 0 to (τ − 1) do

7 : i∗[e]← rnd[e · logN, (e+ 1) · logN − 1] ▷ logN bits of rnd assigned to i
∗
[e].

8 : vgrinding ← rnd[τ · logN, τ · logN + w − 1]

9 : return ({i∗[e]}e<τ , vgrinding)

ExpandChallengeEvaluationPoints(h) returns the challenge points on which are
done the evaluations to be revealed to the verifier, see Step 3 of the Mirath
protocol in Section 3.3. This routine is used in OpenRandomEvaluations and in
ComputeEvaluations.

Algorithm 9 Challenge matrix Γ ∈ F(mn−k)×k
qµ .

ExpandChallengeMatrix(h)

1 : nb← (mn− k) · k · ⌈µ · log q/8⌉
2 : prg← Shake.Init()

3 : prg← Shake.Absorb(prg, h)

4 : Γ ← Shake.Squeeze(prg, nb)

5 : return Γ

ExpandChallengeMatrix(h) returns the challenge matrix Γ ∈ Fρ×(mn−k)
qµ , see Step

2 of the Mirath protocol in Section 3.3. It is used in Sign and in Verify.

4.6 Batched All-but-one Vector Commitments

This section details the algorithms of the batched all-but-one vector commit-
ment (BAVC) scheme used in Mirath, see Section 3.1.
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Algorithm 10 Routine BAVC.Commit.

BAVC.Commit(salt, rseed)

1 : tree[0]← rseed

2 : for i from 0 to (τ ·N − 2) do

3 : (tree[2i+ 1], tree[2i+ 2])← ExpandSeed3(salt, tree[i], i)

4 : for e from 0 to (τ − 1) do

5 : for i from 0 to (N − 1) do

6 : seeds[e][i]← tree[(τ ·N − 1) + (i · τ + e)]

7 : commit[e][i]← Hash3(salt, seeds[e][i], (τ ·N − 1) + i · τ + e)

8 : hcom ← Hash3({commit[e][i]}e,i)
9 : key← tree ∥ commit

10 : return (seeds, hcom, key)

Algorithm 11 Routine BAVC.Open.

BAVC.Open(key, {i∗[e]}e)

1 : (tree, commit)← key

2 : hidden← {(τ ·N − 1) + (i∗[e] · τ + e) : e ∈ {0, . . . , τ − 1}}
3 : revealed← {τ ·N − 1, . . . , 2 · τ ·N − 2}\hidden
4 : for i from (τ ·N − 2) downto 0 do

5 : if (2i+ 1) ∈ revealed and (2i+ 2) ∈ revealed then

6 : revealed← (revealed\{2i+ 1, 2i+ 2}) ∪ {i}
7 : if |revealed| > Topen

8 : return ⊥
9 : path← ∅

10 : for i from 0 to (2 · τ ·N − 2) do

11 : if i ∈ revealed then

12 : path← path ∥ tree[i]
13 : commiti∗ ← commit[0][i∗[0]] ∥ . . . ∥ commit[τ − 1][i∗[τ − 1]]

14 : πBAVC ← path ∥ commiti∗

15 : return πBAVC

Algorithm 10 describes BAVC.Commit, i.e. the Commit method of the BAVC
scheme used in Mirath. This function outputs (seeds, hcom, key), where seeds =
{seeds[e][i]}e<τ,i<N is a set of τ · N seeds in {0, 1}λ, hcom is a commitment
to seeds, and key contains a binary tree tree with leaves given by seeds and
a set commit of τ · N elements in {0, 1}2λ containing one commit per seed in
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seeds. BAVC.Commit is used during signing within the CommitWitnessPolynomials
algorithm.

Algorithm 11 describes BAVC.Open, i.e. the Openmethod of the BAVC scheme
used in Mirath, which outputs the opening πBAVC for the leaves in tree with
indexes in {i∗[e]}e<τ . BAVC.Open is used in OpenRandomEvaluations.

Algorithm 12 Routine BAVC.Reconstruct.

BAVC.Reconstruct({i∗[e]}e <τ)}, πBAVC, salt)

1 : (path, commiti∗)← πBAVC

2 : hidden← {(τ ·N − 1) + (i∗[e] · τ + e) : e ∈ {0, . . . , τ − 1}}
3 : revealed← {τ ·N − 1, . . . , 2 · τ ·N − 2}\hidden
4 : for i from (τ ·N − 2) downto 0 do

5 : if (2i+ 1) ∈ revealed and (2i+ 2) ∈ revealed then

6 : revealed← (revealed\{2i+ 1, 2i+ 2}) ∪ {i}
7 : tree[0], . . . , tree[2 · τ ·N − 2]← ∅, . . . , ∅
8 : for i from 0 to (2 · τ ·N − 2) do

9 : if i ∈ revealed then

10 : (tree[i], path)← path

11 : if tree[i] ̸= ∅ and i < τ ·N − 1 then

12 : (nodes[2i+ 1], nodes[2i+ 2])← ExpandSeed3(salt, nodes[i], i)

13 : for e from 0 to (τ − 1) do

14 : for i from 0 to (N − 1) do

15 : if i ̸= i∗[e] then

16 : seeds[e][i]← nodes[(τ ·N − 1) + (i · τ + e)]

17 : com[e][i]← Hash3(salt, seeds[e][i], (τ ·N − 1) + i · τ + e)

18 : else

19 : seeds[e][i]← ∅
20 : (com[e][i] ∥ commiti∗)← commiti∗

21 : hcom ← Hash3({com[e][i]}e,i)
22 : return (hcom, seeds)

Algorithm 12 describes BAVC.Reconstruct, i.e. the Reconstruct method of the
BAVC scheme used in Mirath. This function outputs (hcom, seeds), where hcom is
the reconstruction of a commitment made for a set of N seeds, and seeds is the
set of N − τ opened seeds {seeds[e][i]}0≤e<τ,i̸=i∗[e].

4.7 Commitment to Polynomials

This section details how to commit to the witness polynomials PS(X) = S ·X+
Sbase, PC′(X) = C′ ·X+C′

base and the masking polynomial Pv(X) = v ·X+vbase
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Algorithm 13 Commit to witness (PS , PC′) and masking Pv polynomials.

CommitWitnessPolynomials(salt, rseed,S,C′)

1 : (seeds, hcom, key)← BAVC.Commit(salt, rseed)

2 : for e from 0 to (τ − 1) do

3 : (Sacc,C
′
acc,v)← (0,0,0) ▷ Sacc ∈ Fm×r

q , C
′
acc ∈ Fr×(n−r)

q , v ∈ Fρ×1
qµ

4 : (Sbase,C
′
base,vbase)← (0,0,0) ▷ Sbase ∈ Fm×r

qµ , C
′
base ∈ Fr×(n−r)

qµ
, vbase ∈ Fρ×1

qµ

5 : for i from 0 to (N − 1) do

6 :
(
Srnd,C

′
rnd,vrnd

)
← ExpandSeedShares(salt, seeds[e][i])

7 :
(
Sacc,C

′
acc,vacc

)
+=

(
Srnd,C

′
rnd,vrnd

)
8 :

(
Sbase,C

′
base,vbase

)
-=

(
ϕ(i) · Srnd, ϕ(i) ·C′

rnd, ϕ(i) · vrnd

)
▷ ϕ : {0, . . . , qµ − 1} → Fqµ

9 : aux[e]←
(
S − Sacc,C

′ −C′
acc

)
10 : base[e]← (Sbase,C

′
base,vbase)

11 : v[e]← vacc

12 : hsh ← Hash1(salt, hcom, aux[0], . . . , aux[τ − 1])

13 : return (base,v, hsh, key, aux)

as indicated at Step 1 of Mirath protocol. It also describes routines to open (and
verify) some random evaluations of the committed polynomials, see Step 3 of
the Mirath protocol Section 3.3.

Algorithm 14 Open random evaluations.

OpenRandomEvaluations(key, hpiop)

1 : ctr← 0

2 : retry:

3 : ({i∗[e]}e<τ , vgrinding)← ExpandChallengeEvaluationPoints(hpiop, ctr)

4 : ▷ i
∗
[e] ∈ {0, . . . , (N − 1)}

5 : πBAVC ← BAVC.Open(key, {i∗[e]}e<τ )

6 : if πBAVC = ⊥ or vgrinding ̸= 0 then

7 : ctr← ctr+ 1

8 : goto retry

9 : return (ctr, πBAVC)

Algorithm 13 describes the routine CommitWitnessPolynomials that commits
to τ different triples of pseudorandom polynomials (PS(X), PC′(X), Pv(X). This
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routine follows the description given in the subsection Committing to Witness
Polynomials, and is used Sign.

Algorithm 14 details the routine OpenRandomEvaluations used in Sign to out-
put (ctr, πBAVC), which contains the necessary information to compute the evalu-
ations Seval = PS(point[e]), C

′
eval = PC(point[e]), and veval = Pv(point[e]) for

any e < τ and to check the consistency of the commitments made at Step 1 of
the Mirath protocol. The value πBAVC is the output of the subroutine BAVC.Open,
while ctr incorporates the output from the grinding and proof-of-work optimiza-
tions.

Algorithm 15 details the routine ComputeEvaluations used in Verify to com-
pute the evaluations Seval = PS(point[e]), C

′
eval = PC(point[e]) and veval =

Pv(point[e]) for any e < τ , and to check the consistency of the commitment
made at Step 1 of the Mirath protocol.

Algorithm 15 Compute evaluations of PS , PC′ and Pv on the opened points.

ComputeEvaluations(salt, ctr, hpiop, πBAVC, aux)

1 : ({i∗[e]}e<τ , vgrinding)← ExpandChallengeEvaluationPoints(hpiop, ctr)

2 : hcom, seeds← BAVC.Reconstruct({i∗[e]}e <τ)}, πBAVC, salt)

3 : hsh ← Hash1(salt, hcom, aux[0], . . . , aux[τ − 1])

4 : for e from 0 to (τ − 1) do

5 : (Seval[e],C
′
eval[e],veval[e]) = (0,0,0)

6 : ▷ (Seval[e],C
′
eval[e],veval[e]) ∈ Fm×r

qµ × Fr×(n−r)

qµ
× Fρ×1

qµ

7 : for i from 0 to N − 1 do

8 : if i ̸= i∗[e] then

9 : (Srnd,Crnd,vrnd)← ExpandSeedShares(salt, seeds[e][i])

10 : a← ϕ(i∗[e])− ϕ(i) ▷ ϕ : {0, . . . , qµ − 1} → Fqµ

11 : (Seval[e],C
′
eval[e],veval[e]) +=

(
aSrnd, aC

′
rnd, avrnd

)
12 : point[e]← ϕ(i∗[e])

13 : (Saux,C
′
aux)← aux[e]

14 : (Seval[e],C
′
eval[e]) += (point[e] · Saux, point[e] ·C′

aux)

15 : eval[e]← (Seval[e],C
′
eval[e],veval[e])

16 : return
(
eval, point, hsh, vgrinding

)

4.8 Computation of Polynomial Proof

This section describes how to compute and recompute the polynomial proof
Pα(X), see Step 2 of the Mirath protocol in Section 3.3.

Algorithm 16 describes the routine ComputePolynomialProof used in Sign to
compute the τ polynomial proof Pα(X) = αmid ·X+αbase from the τ committed
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polynomials PS(X) = S ·X+Sbase, PC(X) = C ′ ·X+C ′
base, Pv(X) = v ·X+vbase

and the matrices Γ ∈ Fρ×(m·n−k)
qµ and H ′ ∈ F(mn−k)×k

q .

Algorithm 16 Computation of the polynomial Pα.

ComputePolynomialProof(base,v,S,C′,Γ ,H ′)

1 : (Sbase,C
′
base,vbase)← base[e]

2 : Ebase ← [0m×r | Sbase ·C′
base] ▷ Ebase ∈ Fm×n

qµ

3 : e← vec(Ebase) ▷ e ∈ Fmn
qµ with the entries of Ebase in a column-major order

4 : (eA, eB)← Split(e) ▷ eA ∈ F(mn−k)×1

qµ
, eB × Fk×1

qµ

5 : αbase ← Γ (eA +H ′eB) + vbase ▷ αbase ∈ Fρ×1
qµ

6 : Emid ← [Sbase | SbaseC
′ +C′

baseS] ▷ Emid ∈ Fm×n
qµ

7 : e′ ← vec(Emid) ▷ e
′ ∈ Fmn

qµ with the entries of Emid in a column-major order

8 : (e′
A, e

′
B)← Split(e′) ▷ e

′
A ∈ F(mn−k)×1

qµ
, e

′
B × Fk×1

qµ

9 : αmid ← Γ (e′
A +H ′e′

B) + v ▷ αmid ∈ Fρ×1
qµ

10 : return (αmid,αbase)

Algorithm 17 describes RecomputePolynomialProof, used in Verify to recover
the polynomial proofs Pα(X) from the different evaluations Seval = PS(point[e]),
C ′

eval = PC(point[e]) and veval = Pv(point[e]) with a given point[0], . . . , point[τ−
1] ∈ S ⊂ Fqµ .

Algorithm 17 Reconstruction of the polynomial Pα.

RecomputePolynomialProof(point, eval,Γ , (H ′,y),αmid)

1 : Seval,C
′
eval,veval ← eval

2 : Eeval ← (point · Seval | SevalC
′
eval) ▷ Eeval ∈ Fm×n

qµ

3 : e← vec(Eeval) ▷ e ∈ Fmn
qµ with the entries of Eeval in a column-major order

4 : (eA, eB)← Split(e) ▷ eA ∈ F(mn−k)×1

qµ
, eB × Fk×1

qµ

5 : αeval ← Γ (eA +H ′eB − y · point2) + veval ▷ αeval ∈ Fρ×1
qµ

6 : αbase ← αeval −αmid · point
7 : return αbase

4.9 Parsing of the Signature

In Algorithm 18 and Algorithm 19 we give the details of packing/unpacking the
signature in Mirath. This packing is performed tightly in order to efficiently avoid
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Algorithm 18 Unparse signature.

UnparseSignature (salt, ctr, hpiop, πBAVC, aux,αmid)

1 : nbits← 2λ+ 64 + 2λ+ Topenλ+ 2τλ+ τ(mr + r(n− r) + ρµ) log q

2 : nb← ⌈nbits/8⌉
3 : σ ← 0nb ▷ An array of nb zero bytes

4 : σ[0, λ(4 + Topen + 2τ) + 63]← (salt ∥ bin64(ctr) ∥ hpiop ∥ πBAVC)

5 : ▷ bin64(ctr) is the 64-bit representation of ctr.

6 : ib ← λ(4 + Topen + 2τ) + 64

7 : for e from 0 to (τ − 1) do

8 :
(
Saux ∥ C′

aux

)
← aux[e] ▷ Saux ∈ Fm×r

q , C
′
aux ∈ Fr×(n−r)

q

9 : σ, ib ← UnparseMatrix(σ,Saux, ib,Fm×r
q )

10 : σ, ib ← UnparseMatrix(σ,C′
aux, ib,Fr×(n−r)

q )

11 : σ, ib ← UnparseMatrix(σ,αmid[e], ib,Fρ×1
qµ )

12 : return σ

trivial forgeries, and whenever the bitsize of the signature is not a multiple of
eight, we set the free bits in the last byte of the signature to zeros and check
them during the verification.

Algorithm 19 Parse signature.

ParseSignature(σ)

1 : salt← σ[0, 2λ− 1]

2 : ctr← σ[λ, λ+ 63]

3 : hpiop ← σ[λ+ 64, 3λ+ 63]

4 : πBAVC ← σ[3λ+ 64, λ(3 + Topen + 2τ) + 63]

5 : ib ← λ(3 + Topen + 2τ) + 64

6 : for e from 0 to (τ − 1) do

7 : Saux, ib ← ParseMatrix(σ, ib,Fm×r
q ) ▷ Saux ∈ Fm×r

q

8 : C′
aux, ib ← ParseMatrix(σ, ib,Fr×(n−r)

q ) ▷ C
′
aux ∈ Fr×(n−r)

q

9 : aux[e]←
(
Saux ∥ C′

aux

)
10 : αmid, ib ← ParseMatrix(σ, ib,Fρ×1

qµ )

11 : return (salt, ctr, hpiop, πBAVC, aux,αmid)

4.10 Key Generation

The key generation algorithm is described in Algorithm 21. The bit size of the
public key is |seedpk|+ |y| = λ+(mn− k) log q and the bit size of the secret key
is |seedpk|+ |seedsk| = 2λ.
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Algorithm 20 Routine ComputeY.

ComputeY(S,C′,H ′)

1 : E ← (S | SC′) ▷ E ∈ Fm×n
q

2 : e← vec(E) ▷ e ∈ Fmn
q with the entries of E in a column-major order

3 : (eA, eB)← Split(e) ▷ eA ∈ F(mn−k)×1
q , eB ∈ Fk×1

q

4 : y ← eA +H ′eB ▷ y ∈ F(mn−k)×1
q

5 : return y

Algorithm 21 Key generation algorithm.

KeyGen()

1 : seedsk ← TRG.Seed(λ)

2 : seedpk ← TRG.Seed(λ)

3 : S,C′ ← ExpandSeedSecretMatrices(seedsk) ▷ S ∈ Fm×r
q , C

′ ∈ Fr×(n−r)
q

4 : H ′ ← ExpandSeedPublicMatrix(seedpk) ▷ H
′ ∈ F(m·n−k)×k

q

5 : y ← ComputeY(S,C′,H ′) ▷ y ∈ F(mn−k)×1
q

6 : pk← (seedpk,y)

7 : sk← (seedsk, seedpk)

8 : return (pk, sk)

The key decompressing routines are shown in Algorithms 22 and 23.

Algorithm 22 Decompress public key routine.

DecompressPK(pk)

1 : seedpk,y ← pk

2 : H ′ ← ExpandSeedPublicMatrix(seedpk)

3 : return (H ′,y)

Algorithm 23 Decompress secret key routine.

DecompressSK(sk)

1 : seedsk, seedpk ← sk

2 : H ′ ← ExpandSeedPublicMatrix(seedpk)

3 : (S,C′)← ExpandSeedSecretMatrices(seedsk)

4 : y ← ComputeY(S,C′,H ′)

5 : pk← (seedpk,y)

6 : return (H ′, pk,S,C′)
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4.11 Signing

Algorithm 24 specifies Mirath’s signing algorithm Sign. The maximum bit size of
a Mirath signature σ is

|σ| = 2λ︸︷︷︸
salt

+ 64︸︷︷︸
ctr

+ 2λ︸︷︷︸
hpiop

+ λ · Topen︸ ︷︷ ︸
path (in πBAVC)

+ τ · 2λ︸ ︷︷ ︸
commiti∗ (in πBAVC)

+

+ τ ·
(
[rm+ r(n− r)] · log2 q︸ ︷︷ ︸

aux

+ ρµ · log2 q︸ ︷︷ ︸
αmid

)
.

Algorithm 24 Signing algorithm.

Sign(sk,msg)

// Step 0: Initialization.

1 : (H ′, pk,S,C′)← DecompressSK(sk)

2 : salt← TRG.Seed(2λ)

3 : rseed← TRG.Seed(λ)

// Step 1: Build & Commit to Witness Polynomials.

4 : (base,v, hsh, key, aux)← CommitWitnessPolynomials(salt, rseed,S,C′)

// Step 2: Compute the polynomial proof Pα(X).

5 : Γ ← ExpandChallengeMatrix(hsh) ▷ Γ ∈ Fρ×(mn−k)

qµ

6 : for e from 0 to (τ − 1) do

7 : (αmid[e],αbase[e])← ComputePolynomialProof
(
base[e],v[e]S,C′,Γ ,H ′)

8 : hpiop ← Hash2 (pk, salt,msg, hsh,

αmid[0],αbase[0], . . . ,αmid[τ − 1],αbase[τ − 1])

// Step 3: Open random evaluations of the polynomials PS(X), PC(X) and Pv(X).

9 : (ctr, πBAVC)← OpenRandomEvaluations(key, hpiop)

10 : σ ← UnparseSignature (salt, ctr, hpiop, πBAVC, aux,αmid)

11 : return σ
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4.12 Verification

Algorithm 25 specifies Mirath’s verification algorithm Verify.

Algorithm 25 Verification algorithm.

Verify(pk, σ,msg)

// Step 0: Initialization (parsing and expansion).

1 : (salt, ctr, hpiop, πBAVC, aux,αmid)← ParseSignature(σ)

2 : (H ′,y)← DecompressPK(pk)

// Step 1: Computing Opened Evaluations.

3 :
(
evals, point, hsh, vgrinding

)
← ComputeEvaluations(salt, ctr, hpiop, πBAVC, aux)

// Step 2: Recomputation of the Polynomial Proof Pα(X).

4 : Γ ← ExpandChallengeMatrix(hpiop) ▷ Γ ∈ Fρ×(mn−k)

qµ

5 : for e from 0 to (τ − 1) do

6 : αbase[e]← RecomputePolynomialProof(point[e], evals[e],

Γ , (H ′,y),αmid[e])

// Step 3: Verification.

7 : h′
piop ← Hash2 (pk, salt,msg, hsh,αmid[0],αbase[0],

. . . ,αmid[τ − 1],αbase[τ − 1])

8 : return (hpiop
?
= h′

piop) and (vgrinding
?
= 0)
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5 Parameter Sets

We provide several parameter sets using the nomenclature Mirath-Xy-z where
X ∈ {1, 3, 5} denotes the security level, y ∈ {a, b} corresponds to parameters us-
ing respectively q = 16 and q = 2 for the base field Fq and z ∈ {short, fast} refers
to size/performance trade-off considered for the parameter set.

5.1 MinRank Parameters

MinRank parameters used in Mirath are given in Tables 4 and 5. The security
of Mirath against classical MinRank attacks is estimated using the MinRank
estimator from the CryptographicEstimators V2.0.0 8 [18], which considers all
the classical attacks described in Section 8. The bit security estimates given in
Tables 5 and 4 are computed by configuring the estimator with all values default
but the matrix multiplication constant (ω in Section 8.2) begin set to 2.81.

Instance q m n k r
classical

bit security

Mirath-1a 16 16 16 143 4 158

Mirath-3a 16 19 19 195 5 225

Mirath-5a 16 22 22 255 6 301

Table 4. MinRank parameters used in Mirath-a (q = 16)

Instance q m n k r
classical

bit security

Mirath-1b 2 42 42 1443 4 158

Mirath-3b 2 50 50 2024 5 224

Mirath-5b 2 56 56 2499 6 289

Table 5. MinRank parameters used in Mirath-b (q = 2)

8 Code available at https://github.com/Crypto-TII/CryptographicEstimators.

https://github.com/Crypto-TII/CryptographicEstimators
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5.2 Protocol Parameters

The protocol related parameters used in Mirath are given in Table 6.

Instance q µ ρ τ N Topen w

Mirath-1a-short 16 3
11 11 212 116 7

Mirath-1b-short 2 12

Mirath-1a-fast 16 2
16 17 28 118 9

Mirath-1b-fast 2 8

Mirath-3a-short 16 3
16 17 212 174 5

Mirath-3b-short 2 12

Mirath-3a-fast 16 2
24 26 28 184 10

Mirath-3b-fast 2 8

Mirath-5a-short 16 3
22 23 212 232 3

Mirath-5b-short 2 12

Mirath-5a-fast 16 2
32 36 28 244 4

Mirath-5b-fast 2 8

Table 6. MPC parameters used in Mirath (q = 16 and q = 2)
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5.3 Key and Signature Sizes

Public key, secret key and signatures size of Mirath are given in Tables 7 and 8.

Instance sk size [B] pk size [B] σ size [B]

Mirath-1a-short 32 73 3,078

Mirath-1a-fast 32 73 3,728

Mirath-3a-short 48 107 6,907

Mirath-3a-fast 48 107 8,537

Mirath-5a-short 64 147 12,413

Mirath-5a-fast 64 147 15,504

Table 7. Keys and signature sizes of Mirath-a (q = 16)

Instance sk size [B] pk size [B] σ size [B]

Mirath-1b-short 32 57 2,902

Mirath-1b-fast 32 57 3,456

Mirath-3b-short 48 84 6,514

Mirath-3b-fast 48 84 7,936

Mirath-5b-short 64 112 11,620

Mirath-5b-fast 64 112 14,262

Table 8. Keys and signature sizes of Mirath-b (q = 2)
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6 Implementation and Performance Analysis

This section provides performance measures of our implementations of Mirath.

Benchmark platform. The benchmarks were performed on a machine running
Ubuntu Server 22.04.5 LTS, equipped with an Intel 13th-generation Intel (R)
Core(TM) i9-13900K CPU running at 3000MHz and 64GB of RAM. All the ex-
periments were performed with Hyper-Threading, Turbo Boost, and SpeedStep
features disabled. The scheme has been compiled with GCC compiler (version
11.4.0) and uses the XKCP library.

The results of each parameter set were obtained by computing the mean from
25 random instances. To minimize biases from background tasks running on the
benchmark platform, each instance has been repeated 25 times and averaged.
Additionally, all the parameter sets run without increasing the stack memory, ex-
ceptMirath-3a-short,Mirath-3b-short,Mirath-5a-short, andMirath-5b-short, which
requires increasing the stack memory to 15360 kilobytes (e.g., we increase the
stack memory by running ulimit -s 15360).

Constant time. The provided implementations have been implemented in a
constant time way whenever relevant, and as such, the running time is expected
to not leak any information concerning sensitive data. Additionally, Valgrind
(version 3.18.1) and LibVEX were used to check that the implementation did
not have memory leaks.

Remark on the instantiation of Mirath. The performance profile of Mirath
(and more generally any MPCitH based schemes) is highly dependent on the
performances of the underlying symmetric primitives. In Mirath, PRG are in-
stantiated using either AES or SHAKE while hash functions are instantiated
using SHA3. One should note that different choices would lead to significant dif-
ferences in performances. We may provide additional benchmarks with different
symmetric primitive choices in the future.

6.1 Reference Implementation

The performances of our reference implementations on the aforementioned bench-
mark platform are reported in Tables 9 and 10 respectively. One should note
that our reference implementation is only provided to help understanding the
scheme and as such is not representative of the performance that the scheme
can achieve, we defer the reader to Tables 11 and 12 for the performances of our
optimized implementation. The following compilation flags have been used -O3

-flto -fomit-frame-pointer.
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Instance Keygen Sign Verify

Mirath-1a-short 0.2 M 16.1 B 26.6 B
Mirath-1a-fast 0.2 M 1.6 B 2.6 B

Mirath-3a-short 0.4 M 78.8 B 133.4 B
Mirath-3a-fast 0.4 M 6.8 B 11.0 B

Mirath-5a-short 0.6 M 95.0 B 155.9 B
Mirath-5a-fast 0.6 M 9.5 B 15.3 B

Table 9. Performances of Mirath-a (Reference) in Millions (M) and Billions (B) of
CPU Cycles.

Instance Keygen Sign Verify

Mirath-1b-short 1.9 M 18.3 B 30.9 B
Mirath-1b-fast 1.8 M 1.6 B 2.6 B

Mirath-3b-short 3.9 M 69.8 B 115.2 B
Mirath-3b-fast 3.9 M 6.8 B 11.0 B

Mirath-5b-short 6.4 M 95.5 B 156.2 B
Mirath-5b-fast 6.5 M 8.4 B 13.0 B

Table 10. Performances of Mirath-b (Reference) in Thousands (K) and Billions (B) of
CPU Cycles.

6.2 Optimized Implementation

The performance of our the optimized implementations on the aforementioned
benchmark platform are described in Tables 11 and 12 respectively. The following
compilation flags have been used -O3 -mavx -mavx2 -mbmi -mbmi2 -maes

Instance Keygen Sign Verify

Mirath-1a-short 0.2 M 166 M 123 M
Mirath-1a-fast 0.2 M 11.0 M 9.8 M

Mirath-3a-short 0.3 M 597 M 411 M
Mirath-3a-fast 0.3 M 33.6 M 34.4 M

Mirath-5a-short 0.5 M 1415 M 712 M
Mirath-5a-fast 0.5 M 86.7 M 65.1 M

Table 11. Performances of Mirath-a (Optimized) in Millions of CPU Cycles.
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Instance Keygen Sign Verify

Mirath-1b-fast 0.6 M 15.1 M 12.2 M
Mirath-1b-short 0.6 M 152 M 101 M

Mirath-3b-fast 1.2 M 55.0 M 51.6 M
Mirath-3b-short 1.2 M 520 M 327 M

Mirath-5b-fast 2.0 M 121 M 88.0 M
Mirath-5b-short 2.0 M 1421 M 630 M

Table 12. Performances of Mirath-b (Optimized) in Millions of CPU Cycles.

6.3 Known Answer Test Values

Known Answer Test (KAT) values have been generated using the script provided
by the NIST and can be retrieved in the KATs/ folder. Both reference and
optimized implementations generate the same KATs.
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7 Security Analysis

7.1 Security Proof

In this section, we provide a security proof for the Mirath scheme. One should
note that this proof relies on generic PRGs, Hash functions and commitment
schemes and as such does not encompass the specific choices made in order to
instantiate these primitives while implementing the scheme.

Theorem 1. Let the PRG used be (t, ϵPRG)-secure, and ϵSMR the advantage an
adversary has over the Syndrome MinRank problem. Consider Hash1,Hash2,Hash3
behave as random oracles, with an output of 2λ bits. If an adversary makes qi
queries to Hashi and qS queries to the signing oracle, then the probability for
him to produce a forgery for the Mirath Signature Scheme is bounded by:

Pr[Forge] ≤3 · (q′ + (τ ·N + 1) · qS)2

2 · 22λ
+

qS · (qS + 3q′)

22λ

+ qS · τ · ϵPRG + q′ · 2−w ·
(

2

N

)τ

+ q′ · τ · 1

qµ·ρ
+ ϵSMR

where q′ = max(q1, q2, q3) and τ is the number of repetitions of the signature.

Proof. In this proof, we will adopt a game hopping strategy in order to find the
upper bound. The first game will be the access to the standard signing oracle by
the adversary A. We will then game hop in order to eliminate the cases where
collisions happen, and, through some other games, we will manage to find an
upper bound. We note Pri[Forge] the probability of forgery when considering
game i. The aim of the proof is to find an upper bound on Pr1[Forge].

– Game 1. This is the interaction between A and the real signature scheme.
KeyGen generates (H,y,S,C′) and A receives (H,y). A can make queries
to each Hashi independently, and can make signing queries. At the end of
the attack, A outputs a message/signature pair, (m,σ). The event Forge
happens when the message output by A was not previously used in a query
to the signing oracle.

– Game 2. In this game, we add a condition to the success of the attacker.
The condition we add is that if there is a collision between outputs of Hash1,
or Hash2, or Hash3, then, the forgery is not valid. The first step is to look
at the number of times every Hashi is called when calling the signing oracle.
The signing oracle contains one call to Hash1 and Hash2, and (τ · N + 1)
to Hash3. The number of queries to Hash1, to Hash2, or to Hash3 is then
bounded from above by q′+(τ ·N +1) ·qS , where qi is the number of queries
made by A to Hashi, q

′ = max{q1, q2, q3}, qS is the number of queries to the
signing oracle. We thus have:

|Pr1[Forge]− Pr2[Forge]| ≤
3 · (q′ + (τ ·N + 1) · qS)2

2 · 22λ
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– Game 3. The attacker now fails if the inputs to any of the Hashi has already
appeared in a previous query. If that happens, this means that at least the
salt used was the same (we emphasize on at least). We have one salt sampled
every time a query is made to the signing oracle, and it can collide each time
with a previous salt or any of the queries to the Hashi. This means, we can
bound this with:

|Pr2[Forge]− Pr3[Forge]| ≤
qS · (qS + q1 + q2 + q3)

22λ
≤ qS · (qS + 3 · q′)

22λ

– Game 4. When signing a message m, we now replace hsh and hpiop with
uniformly distributed random values. We then compute the challenges Γ and
{i∗(e)}e, and the value vgrinding, by expanding them. There is a difference
with Game 3 during a signing query, if a query to Hash1 or Hash2 was
previously made. However, this does not happen as Game 3 would already
abort due to salt collision which means that:

Pr4[Forge] = Pr3[Forge]

– Game 5. We replace each commite,i, and hcom, with a uniformly distributed
random value. Since hcom = Hash1({commite,i}e,i), there cannot be a colli-
sion on hcom as there is no collision on the commitments since commite,i is
expanded using e and i. This then means that, to have a collision on two
queries to Hash3, the same salt must be used, which is already an invalid
forgery from the previous games thus:

Pr5[Forge] = Pr4[Forge]

– Game 6.We now use the HVZK simulator of the proof of knowledge in order
to generate the views of the parties randomly. A has an advantage of ϵPRG

at most when generating the views (as it is his advantage to distinguish
between a random and a true transcript). Hence, the difference with the
previous game is given by:

|Pr6[Forge]− Pr5[Forge]| ≤ τ · qS · ϵPRG

– Game 7. Finally, we say that an execution with index (e∗, ctr) of a query

hpiop = Hash2
(
pk, salt,msg, hsh, (α

(e)
mid,α

(e)
base)e∈[1,...,τ ]

)
allows to retrieve a

correct witness if:

• hcom is a query to Hash3, i.e., hcom = Hash1({commite,i}e,i);
• Each commite,i is a query to Hash3, i.e., commite,i = Hash3(seede,i, i · τ +
e, salt)

• hsh is the output of a query to Hash1, i.e., hsh = Hash1(hcom, (S
(e)
aux,C

′(e)
aux )e∈[1,...,τ ]);

• The matrices S,C′ defined by {state(e
∗)

i }i∈[1,...,N ] form a correct Syn-
drome MinRank solution;
• vgrinding = 0 ∈ {0, 1}w and πBAVC ̸= ⊥.
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In such cases, one is able to retrieve the correct witness from {seed(e
∗)

i }i∈[1,...,N ],
and as a consequence is able to solve the Syndrome MinRank instance which
means that:

Pr7[Solve] ≤ ϵSMR

Finally, we need to look at the upper bound of
∣∣Pr7[Forge ∩ Solve]

∣∣. Solve does
not happen here, meaning that, to have a forgery after a query to Hash2, A
has no choice but to cheat either on Γ or on {i∗(e

∗)}. For that, he can:

• Find matrices S̃ and C̃′ such that H vec
(
S̃ ·
[
Ir ∥ C̃′

])
̸= y but such

that Γ ·
(
H vec

(
S̃ ·
[
Ir ∥ C̃′

])
− y

)
= 0, which happens with proba-

bility p = 1
qµ·ρ ;

• Successfully cheat on the polynomial Pα, which happens with probability
2
N because there are 2 roots to this polynomial.

Cheating on the second round must happen on the τ repetitions thus the
cheating probability is bounded by q′ ·

(
2
N

)τ
+q′ ·τ · 1

qµ·ρ . In addition, because

vgrinding must be equal to 0, the adversary A has a success probability 2−w

for each iteration (e∗, ctr). This results in a probability to cheat bounded by
2−w·q′·

(
2
N

)τ
+q′·τ · 1

qµ·ρ . Finally, the adversary must have πBAVC ̸= ⊥. Let θ be
the probability that πBAVC = ⊥ namely the probability that the sibling path
exceeds the threshold Topen. This reduces the number of possible challenges
from Nτ to (Nτ ) · (1− θ). Thus, the adversary only has to guess among the

(Nτ ) · (1− θ) challenges which does not fail, but since the set {i∗(e)}e is
uniformly sampled, the forgery will fail with probability θ. As a result, the
adversary can cheat with probability 2τ

(Nτ )·(1−θ) · (1− θ) =
(

2
N

)τ
.

Computing the sum of the aforementioned upper bounds concludes the proof.
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8 Known Attacks

8.1 Generic Attacks against Fiat–Shamir Signatures

It is possible to forge a signature without solving the underlying instance of
the MinRank problem. For signature schemes built by applying the Fiat–Shamir
transformation on a five-pass identification, Kales and Zaverucha proposed in
[32] a forgery achieved by guessing separately the two challenge of the protocol.
It results in an additive cost rather than the expected multiplicative cost. The
cost associated with forging a transcript that passes the first 5 rounds of the
Proof of Knowledge relies on achieving an optimal trade-off between the work
needed for passing the first step and the work needed for passing the second
step. To achieve the attack, one can find an optimal number of repetitions with
the formula:

τ ′ = arg min
0≤τ ′≤τ

{
1

P1
+
( 1

P2

)τ−τ ′}
where P1 and P2 are the probabilities to pass respectively the first τ challenge
τ ′ times and the second challenge τ − τ ′ times.

In our case, P1 corresponds to the probability of having a false-positive in the
polynomial constraints protocol ρ times, and P2 corresponds to the probability
of cheating on the polynomial Pα (see Section 3.1). Therefore, the KZ attack
complexity is given by

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′

(
τ
i

)
pi(1− p)τ−i

+ (
N

2
)τ−τ ′

}

where p = 1
qµ·ρ .

8.2 Known attacks against the MinRank Problem

There are two types of attacks on the MinRank problem: combinatorial and
algebraic. In the following, we detail the most efficient approaches of both cate-
gories, as well as a hybrid strategy. In this section, all complexity formulas are
given in terms of multiplications in Fq, and ω ∈ [2, 3] denotes the constant of
matrix multiplication, that is, two n× n matrices over a field can be multiplied
in O(nω) field multiplications.

Hybrid strategy. We combine two hybridization strategies to solve a given
instance of the MinRank. The first one guesses lv coefficients of the solution
vector (α1, . . . , αk). The second one, introduced by Bardet et al. [6], guesses a
vectors (with a specific structure) in the right kernel of the secret E. For each
guess of the combined approach one derives a MinRank instance M̃0, . . . ,M̃k

with parameters (q,m, n−a, k−am− lv, r). Hence the complexity of this hybrid
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approach is given by

qa·r+lv
(
MR Complexity(q,m, n− a, k − am− lv, r)

+
(
min{k, am}

)ω)
, (4)

where MR Complexity(·) gives the complexity to solve a random instance of the
MinRank problem defined by the input parameters.

Combinatorial attacks. We describe below attacks based on enumerating
coefficients, enumerating entries of E and Kernel search.

Enumerating coefficients. The most trivial way to solve the MinRank problem
is to try all possible solution vectors in Fk

q . For each vector, we compute the
corresponding linear combination with the input matrices M0, . . . ,Mk ∈ Fm×n

q

and check if it has rank at most r. The complexity of this attack is O
(
qk ·rω

)
[14].

Enumerating entries of E. Another way is to enumerate some entries of the
hidden matrix E. This attack is particularly effective when (m− r)(n− r) < k,
and it is known as the big-k attack9.

Kernel-search. The kernel-search algorithm was introduced by Goubin and Cour-
tois [28]. It consists of guessing ⌈k/m⌉ linearly independent vectors in the kernel
of the unknown rank r matrix E. The expected complexity of this algorithm is

O
(
qr·⌈k/m⌉ · kω

)
.

Algebraic attacks. Let M0, . . . ,Mk ∈ Fm×n
q be an instance of the MinRank

problem with target rank r. Let M be the formal matrix of linear forms in the
αi’s defined by M = M0 +

∑k
i=1 αiMi.

Kipnis-Shamir modeling. The first algebraic modeling to solve the MinRank
problem was proposed in 1999 by Kipnis and Shamir [33]. It is based on the

following fact: If there is a vector (α1, . . . , αk) ∈ Fk
q and a matrix K ∈ Fr×(n−r)

q

such that

M ·
[
In−r

−K

]
= 0m×(n−r), (5)

where In−r ∈ F(n−r)×(n−r)
q is a non-singular matrix, then the vector (α1, . . . , αk)

is a solution to the instance M0, . . . ,Mk ∈ Fm×n
q .

The Kipnis-Shamir modeling consists on solving with algebraic techniques the
system coming from the entries of the matrix equation in Eq. (5). The unknowns

9 Originally called the big-m attack, since m was the variable used to denote the
number of matrices in the MinRank problem [14].
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being the αi’s and the entries of the matrix K. However, its complexity is not
well understood, in particular because, according to [5,29], the Gröbner basis
computation will produce the Minors and Support-Minors equations that we
describe below. It is then more interesting from the computational point of view
to directly consider the Minors or Support-Minors modelings

Minors modeling. This modeling was presented and analyzed in [19,20]. The
algebraic system consists of all the minors of size r+1 of M . This is a determi-
nantal system, whose Hilbert series is given by

HS(t) :=

[
(1− t)(m−r)(n−r)−(k+1) det(A(t))

t(
r
2)

]
,

with A(t) =
(∑max(m−i,n−j)

ℓ=0

(
m−i
ℓ

)(
n−j
ℓ

)
tℓ
)
1≤i≤r,1≤j≤r

where for a series S ∈ Z[[t]], [S] denotes the series obtained by truncating S at
the first non-positive coefficient.

As long as k < (m− r)(n− r), the series is a polynomial, and the degree of
regularity D of the system is deg(HS)+1. The complexity of the Gröbner basis
computation can then be estimated as the cost of computing the echelon form
on the Macaulay matrix of the system in degree D that has

(
k+D
D

)
columns and

almost the same rank. As shown in [27], it is possible to refine the F5 algorithm to
construct subs-matrices of the Macaulay matrices with a number of rows equal
to its rank. Even if this algorithm has not been designed yet for the Minors
modeling for any parameters set, we estimate the complexity of computing the
echelon form as

O

((
k +D

D

)ω)
, D = deg(HS(z)) + 1.

Support-Minors Modeling. The Support-Minors modeling was introduced in [7].
The idea is to consider the vector space generated by the rows of a column
submatrix M ′ of M , that has rank r and n′ ≥ r + 1 columns, to introduce a
formal matrix C ∈ Fr×n′

q representing a generator matrix of this vector space.
As C is a basis for the rows of M ′, each row mi of M

′ is a linear combination
of the rows of C. This leads to the algebraic system

SupportMinors =

{
MaximalMinors

((
mi

C

))
: mi row of M ′

}
.

Considering the maximal minors of C as new variables, the system consists of
bilinear equations in the αi’s and the minors of C. It is conjectured in [7], based
on a theoretical analysis of the system and some experimental heuristics, that it
is possible to solve this bilinear system by linear algebra on the Macaulay matrix
at augmented degree b ≤ min(q − 1, r + 1, n′ − r) in the αi’s and degree one in
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the minors of C. This matrix has rank Nb and Mb columns with

Nb =


∑b

i=1(−1)i+1
(

n′

r+i

)(
m+i−1

i

)(
k+b−i−1

b−i

)
if q > 2∑b

j=1

∑j
i=1(−1)i+1

(
n′

r+i

)(
η+i−1

i

)(
m
j−i

)
if q = 2.

Mb =


(
k+b−1

b

)(
n′

r

)
if q > 2∑b

j=1

(
n′

r

)(
m
j

)
if q = 2.

The degree b is computed as the smallest degree such that Nb ≥Mb − 1. In this
case, the complexity of the Support-Minors modeling is given by

min
{
3 · k(r + 1) ·M2

b , 7 ·NbMb
ω−1

}
.

Quantum attacks. We use the quantum algorithm introduced in [1]. This
algorithm executes a Grover search of some of the columns of the secret matrix
K from the Kipnis-Shamir modeling (see Eq. (5)).

Let k1, . . . ,kn−r ∈ Fr
q denote the columns K, and let t > (k + 1)/m be an

integer. Define B(k1, . . . ,kt) ∈ F(k+1)×mt
q as the matrix such that (α1, . . . , αk, 1)·

B(k1, . . . ,kt) gives the bilinear equations (in the αi’s and the entries of the kj ’s)

in the first t columns of M ·
[
In−r −K⊤]⊤ in a fixed order.

By the Kipnis-Shamir modeling, it holds that

(α1, . . . , αk, 1) ·B(k1, . . . ,kt) = 01×mt.

Therefore, the rank of B(k1, . . . ,kt) is less than k + 1.

Let S be the of all possible qrt matrices of the formB(x1, . . . ,xt) ∈ F(k+1)×mt
q ,

with x1, . . . ,xt ∈ Fr
q. For the algorithm to work, we need to execute it using a

value t such that B(k1, . . . ,kt) is the only matrix in S with rank less than k+1.
For such a value t, the quantum complexity of this attack is

O
(
2(rt log q)/2 · (k + 1)2mt

)
operations over Fq.

Determing the minimum t such that B(k1, . . . ,kt) is the only matrix in S
with rank less than k+1 plays a key role in the complexity of the attack. Unlike
[1], we assume that a randomly selected matrix from S is of rank less than k+1
with probability O

(
q−(mt−k)

)
, which is the probability that a random matrix in

F(k+1)×mt
q is not full rank. Therefore, as long as k/(m− r) < t, we expect that

B(k1, . . . ,kt) is the only matrix in S with rank less than k + 1. However, the
choice t = ⌈(k + 1)/m⌉ gives a lower-bound of the quantum complexity of the
algorithm. This is the value used to compute the margins in Table 13.
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Limited circuit depth. For the quantum security definition of NIST categories 1,
3 and 5, the maximum depth of the used quantum circuits is limited to 2maxdepth

with maxdepth ≤ 96. A parameter set is said to match the quantum security
definition for a category if an attack requires at least 2b−maxdepth quantum gates
for b = 157, 221, 285 for category 1, 3 and 5, respectively.

We lower bound the depth of the described quantum circuit by

D = 2(rt log q)/2k2,

which corresponds to the sequential repetition of the Grover iterations, where
we lower bound the depth of the oracle with k2.

In the case of D > 2maxdepth, the most efficient strategy to restrict the depth
of the quantum circuit is to partition the search space in P equally sized sets
[34]. Then the search has to be reapplied for each partition, which comes at a
depth of

DP =
D√
P
.

and leads to DP = 2maxdepth for a choice of P = (D/2maxdepth)2.
The total number of quantum gates necessary to launch the depth-limited

attack becomes
T = O(P ·DP ·mt log2 q), (6)

where we count (log q)2 gates per field multiplication.
In Table 13, we state the respective parameter t for each parameter set and

the security margin. A margin of x implies that a quantum attack on the re-
spective parameter set is 2x times as costly as a quantum attack on AES with
corresponding key length (using the NIST metric). Since all margins are found
to be positive, quantum attacks on Mirath remain less efficient than those on
AES.

q Category t margin

2
NIST-1 35 36
NIST-3 41 39
NIST-5 45 41

16
NIST-1 9 27
NIST-3 11 41
NIST-5 12 47

Table 13. Quantum security margin of different parameter sets.



52 Mirath Team

9 Advantages and Limitations

One of the key aspects of Mirath is that it is constructed from a zero-knowledge
proof of knowledge via the Fiat–Shamir transform. This approach inherits many
advantages, but it also bears some limitations.

9.1 Advantages

Security. The main hardness assumption of Mirath is the difficulty of solving
random non-structured instances of the MinRank problem. This well-established
NP-complete problem has been significantly studied in the cryptanalysis of
multivariate-based cryptosystems and in the construction of the post-quantum
signature schemes MiRitH and MIRA. Furthermore, due to its many applications
in cryptography and cryptanalysis, the hardness of the MinRank problem is
well-understood by the cryptographic community. Hence, it constitutes a con-
servative assumption.

Signature + public key size. Mirath offers competitive signature sizes us-
ing very small public keys, which yields a competitive signature + public key
size. For NIST security level 1, the sum of the signature and public key sizes
of Mirath gives 2.9 kB for (q = 2) and 3.1 kB for (q = 16), which are both
smaller than the post-quantum NIST standards ML-DSA (Dillitium) and SLH-
DSA (SPHINCS+) with 3.7 kB and 7.8kB respectively.

Resilience against MinRank attacks: Because of the way the size of the
signature is obtained: one part is related to the MPC and only dependent on the
security level and one part is related to the parameters of the problem in them-
selves, increasing the size of the problem parameters has a limited impact on the
total size of the signature. Thus, if one later discovers effective attacks against
the MinRank problem that force us to increase the parameters, this would have
a limited impact on the scheme.

Extension to ring signatures. A ring signature scheme enables a user to sign
a message so that a ring of possible signers (of which the user is a member) is
identified without revealing exactly which member of that ring actually gener-
ated the signature [11]. Mirath can be easily extended to a ring signature scheme
as shown in [10, Section 5] (as any MinRank-based scheme), or more recently
as shown in [24, Section 6.6] (as any MPCitH-based scheme). We would obtain
signature sizes smaller than 4 KB for a small number of users and smaller than
5 KB for a large number of users.

9.2 Limitations

Growth rate of the signature size. The signature size almost doubles when
increasing the security level. This comes from the fact that both the MinRank
instance and the number of repetitions need to increase linearly, since both the
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Fiat-Shamir transform and the MinRank instance need to reach much higher bit
security.

Efficiency. MPCitH frameworks involves numerous call to symmetric primitives
which makes Mirath slower than the NIST post-quantum standard ML-DSA. Be-
sides this, in general, the efficiency of Mirath is competitive when compared with
other post-quantum signature schemes.

Low-cost devices and embedded systems. Mirath might be particularly
heavy for low-cost devices such as smart cards or embedded systems, although
it has the potential to perform well on hardware as being highly parallelizable.
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A Variant using the VOLEitH Framework

In this section, we provide key and signature sizes for Mirath-v, a variant of
Mirath using the VOLEitH framework as described in Section 3.1.

Instance sk size [B] pk size [B] σ size [B]

Mirath-v-1a-short 32 73 2,998

Mirath-v-1a-fast 32 73 3,640

Mirath-v-3a-short 48 107 6,800

Mirath-v-3a-fast 48 107 8,244

Mirath-v-5a-short 64 147 12,368

Mirath-v-5a-fast 64 147 14,744

Table 14. Keys and signature sizes of Mirath-v-a (VOLE variant, q = 16)

Instance sk size [B] pk size [B] σ size [B]

Mirath-v-1b-short 32 57 2,822

Mirath-v-1b-fast 32 57 3,384

Mirath-v-3b-short 48 84 6,430

Mirath-v-3b-fast 48 84 7,689

Mirath-v-5b-short 64 112 11,609

Mirath-v-5b-fast 64 112 13,640

Table 15. Keys and signature sizes of Mirath-v-b (VOLE variant, q = 2)
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B Variant with Smaller Public Keys

We propose a second key-generation algorithm forMirath, which we call KeyGen2.
It has the advantage of producing smaller public keys, but the disadvantage of a
slower key-generation. KeyGen2 is given as Algorithm 26, and the corresponding
algorithms for key decompression are Algorithms 27 and 28, which in turn rely
on the three subroutines described by Algorithms 29, 30, and 31.

Algorithm 26 is based on the method of Di Scala and Sanna [16] and generates
a public key of the form pk = (seedpk,yB), where seedpk is a seed to generated
H ′ and yA. Hence, the size of the public key is

|pk| = |seedpk|+ |yB | = λ+
(
m(n− r)− k

)
log q

bits. A comparison of the public-key size of KeyGen and KeyGen2 for the param-
eter sets of Mirath is provided in Table 16.

public-key size [B]

Instance KeyGen KeyGen2

Mirath-1a 73 41

Mirath-3a 107 60

Mirath-5a 147 81

Mirath-1b 57 36

Mirath-3b 84 53

Mirath-5b 112 70

Table 16. Public-key sizes of KeyGen and KeyGen2.



56 Mirath Team

Algorithm 26 Routine KeyGen2.

Mirath.KeyGen2()

1 : for t from 1 to max tries do

2 : seedpk ← TRG.Seed()

3 : seedsk ← TRG.Seed()

4 : (MA[],HB[])← ExpandSeedMAHB(seedpk)

▷ MA[i] ∈ Fm×r
q (i = 0, . . . , k), HB[j] ∈ Fm0×1

q (j = 1, . . . , k)

5 : C′ ← ExpandSeedC(seedsk) ▷ C
′ ∈ Fr×(n−r)

q

6 : α← GetSpecialSolution(MA[],C
′) ▷ α ∈ Fk×1

q or α = ⊥

7 : if α ̸= ⊥ then

8 : S ←MA[0]+
∑k

i=1 αiMA[i] ▷ S ∈ Fm×r
q

9 : HB[0]← first m0 entries of vec(SC′) ▷ HB[0] ∈ Fm0×1
q

10 : yB ←HB[0]−
∑k

i=1 αiHA[i] ▷ yB ∈ Fm0×1
q

11 : pk← (seedpk,yB)

12 : sk← (seedsk, seedpk)

13 : return (pk, sk)

14 : endif

15 : endfor

16 : return ⊥

Algorithm 27 Routine DecompressPK2.

Mirath.DecompressPK2(pk)

1 : (seedpk,yB)← pk

2 : (MA[],HB[])← ExpandSeedMAHB(seedpk)

▷ MA[i] ∈ Fm×r
q (i = 0, . . . , k), HB[j] ∈ Fm0×1

q (j = 1, . . . , k)

3 : H ′ ← −
(
vec(MA[1]) · · · vec(MA[k])

HB[1] · · · HB[1]

)
▷ H

′ ∈ F(mn−k)×k
q

4 : y ←
(
vec(MA[0])

yB

)
5 : return (H ′,y)
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Algorithm 28 Routine DecompressSK2.

Mirath.DecompressSK2(sk)

1 : seedpk, seedsk ← sk

2 : (MA[],HB[])← ExpandSeedMAHB(seedpk)

▷ MA[i] ∈ Fm×r
q (i = 0, . . . , k), HB[j] ∈ Fm0×1

q (j = 1, . . . , k)

3 : C′ ← ExpandSeedC(seedsk) ▷ K ∈ Fr×(n−r)
q

4 : α← GetSpecialSolution(MA[],C
′) ▷ α ∈ Fk×1

q or α = ⊥

5 : if α = ⊥ then return ⊥
6 : S ←MA[0]+

∑k
i=1 αiMA[i]

7 : HB[0]← first m0 entries of vec(SC′) ▷ HB[0] ∈ Fm0×1
q

8 : yB ←HB[0]−
∑k

i=1 αiHA[i] ▷ yB ∈ Fm0×1
q

9 : H ′ ← −
(
vec(MA[1]) · · · vec(MA[k])

HB[1] · · · HB[k]

)
▷ H

′ ∈ F(mn−k)×k
q

10 : y ←
(
vec(MA[0])

yB

)
11 : return (H ′,y,S,C′)

Algorithm 29 Routine ExpandSeedMAHB.

Mirath.ExpandSeedMAHB(seedpk)

1 : prg← PRG.Init(seedpk)

2 : for i from 0 to k do

3 : MA[i]← PRG.Sample(prg,Fm×r
q )

4 : endfor

5 : for i from 1 to k do

6 : HB[i]← PRG.Sample(prg,Fm0×1
q )

7 : endfor

8 : return (MA[],HB[])

Algorithm 30 Routine ExpandSeedC.

Mirath.ExpandSeedC(seedsk)

1 : prg← PRG.Init(seedsk)

2 : C′ ← PRG.Sample(prg,Fr×(n−r)
q )

3 : return C′



58 Mirath Team

Algorithm 31 Routine GetSpecialSolution.

GetSpecialSolution(MA[],C
′)

1 : for i from 1 to k do

2 : for j from 0 to k do

3 : ai,j ← m0 + i entry of vec(MA,jC
′)

▷ Note: no need to compute the full product MA,jC
′
, since only one entry is needed

4 : endfor

5 : endfor

6 : A← I − (ai,j)1≤i,j≤k ▷ A ∈ Fk×k
q

7 : b← (ai,0)1≤i≤k ▷ b ∈ Fk×1
q

8 : Compute α ∈ Fk×1
q as the unique solution to the linear system Ax = b,

if such a solution exists unique, otherwise return ⊥
9 : return α
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