- Mirath -

G. Adj, N. Aragon, S. Barbero, M. Bardet, E. Bellini, <u>L. Bidoux,</u> J.J. Chi-Domínguez, V. Dyseryn, A. Esser, T. Feneuil, P. Gaborit, R. Neveu M. Rivain, L. Rivera-Zamarripa, C. Sanna, J.P. Tillich, J. Verbel, F. Zweydinger

NIST Sixth PQC Standardization Conference (09/25)

Overview

Mirath results from the merge between the round 1 candidates MIRA and MiRitH

- ♦ Fiat-Shamir (FS) based signature along with a Zero-Knowledge Proof of Knowledge (PoK)
- PoK built using the Multi-Party Computation in the Head (MPCitH) paradigm
- PoK relies on the hardness of the MinRank problem

https://pqc-mirath.org

Agenda

- 1 Round 2 Updates
- 2 MinRank Problem
- 3 Scheme Overview
- 4 Sizes & Performances
- 5 Advantages & Limitations

New results since Round 1

- ♦ New modeling for MinRank [BFG⁺24]
- ♦ New MPCitH frameworks **TCitH** [FR25] & **VOLEitH** [BBD⁺23]

New results since Round 1

- New modeling for MinRank [BFG⁺24]
- New MPCitH frameworks TCitH [FR25] & VOLEitH [BBD+23]

Modifications for Round 2

- v2.0.0 Merge between MIRA and MiRitH
 Design update using the new modeling along with the new MPCitH frameworks
- v2.0.1 Implementation update
- v2.1.0 Implementation update & MPC Parameters fine-tuning

Instance	Modeling	Proof System	Size (pk + sig.)	
MIRA (round 1)	Annihilator q -polynomial	MPCitH	5.7 - 7.4 kB	
MiRitH (round 1)	Kipnis-Shamir	MPCitH	5.7 - 7.9 kB	
Mirath (round 2)	Dual Support Decomposition	TCitH (& VOLEitH)	3.0 - 3.8 kB	

Table 1: Modifications for Mirath (sizes are given for NIST-1 security level)

MinRank Problem

MinRank Problem

MinRank Problem

Input

- Secret values $\mathbf{x} \in \mathbb{F}_q^k$ and $\mathbf{E} \in \mathbb{F}_q^{m \times n}$ such that $\mathrm{rank}(\mathbf{E}) \leq r$
- Public values $(\mathbf{M}_i)_{i\in[0,k]}\in\mathbb{F}_q^{m imes n}$ such that $\mathbf{E}=\mathbf{M}_0+\sum_{i=1}^kx_i\mathbf{M}_i$ and $\mathsf{rank}(\mathbf{E})\leq r$

Goal

- Find $ilde{\mathbf{x}} \in \mathbb{F}_q^k$ such that $ilde{\mathbf{E}} = \mathbf{M}_0 + \sum_{i=1}^k ilde{x}_i \mathbf{M}_i$ and $\mathsf{rank}(ilde{\mathbf{E}}) \leq r$

The **Syndrome MinRank** problem is **equivalent** to the **MinRank** problem

- \diamond Let vec $:\mathbb{F}_q^{m imes n} o\mathbb{F}_q^{mn}$ be the application vectorizing matrices by column-major order
- $lackbox{ Let }\mathbf{H} \ ext{and }\mathbf{G} = egin{pmatrix} \operatorname{vec}(\mathbf{M}_1) \\ \vdots \\ \operatorname{vec}(\mathbf{M}_k) \end{pmatrix} \ ext{be respectively the parity-check matrix and the generator} \ ext{matrix of the matrix code } \mathcal{C} = \langle \mathbf{M}_1, \cdots, \mathbf{M}_k
 angle \ ext{along with } \mathbf{y}^{ op} = \mathbf{H} \operatorname{vec}(\mathbf{M}_0)^{ op}$

The **Syndrome MinRank** problem is **equivalent** to the **MinRank** problem

- \diamond Let vec $:\mathbb{F}_q^{m imes n} o\mathbb{F}_q^{mn}$ be the application vectorizing matrices by column-major order
- \diamond Let \mathbf{H} and $\mathbf{G} = \begin{pmatrix} \operatorname{vec}(\mathbf{M}_1) \\ \vdots \\ \operatorname{vec}(\mathbf{M}_k) \end{pmatrix}$ be respectively the parity-check matrix and the generator matrix of the matrix code $\mathcal{C} = \langle \mathbf{M}_1, \cdots, \mathbf{M}_k \rangle$ along with $\mathbf{y}^{\top} = \mathbf{H} \operatorname{vec}(\mathbf{M}_0)^{\top}$

$$\mathbf{E} = \mathbf{M}_0 + \sum_{i=1}^k x_i \mathbf{M}_i \quad \Leftrightarrow \quad \mathbf{H} \mathsf{vec}(\mathbf{E})^\top = \mathbf{H} \mathsf{vec}(\mathbf{M}_0)^\top = \mathbf{y}^\top$$

Syndrome MinRank Problem

Input

- Secret value $\mathbf{E} \in \mathbb{F}_q^{m imes n}$ such that $\operatorname{rank}(\mathbf{E}) \leq r$
- Public values $\mathbf{H} \in \mathbb{F}_q^{(mn-k) imes mn}$ and $\mathbf{y} \in \mathbb{F}_q^{mn-k}$

Goal

- Find
$$ilde{\mathbf{E}} \in \mathbb{F}_q^{m imes n}$$
 such that $\mathbf{H} \mathsf{vec}(ilde{\mathbf{E}})^ op = \mathbf{y}^ op$ and $\mathsf{rank}(ilde{\mathbf{E}}) \leq r$

Syndrome MinRank Problem

Input

- Secret value $\mathbf{E} \in \mathbb{F}_q^{m imes n}$ such that $\operatorname{rank}(\mathbf{E}) \leq r$
- Public values $\mathbf{H} \in \mathbb{F}_q^{(mn-k) imes mn}$ and $\mathbf{y} \in \mathbb{F}_q^{mn-k}$

Goal

- Find $ilde{\mathbf{E}} \in \mathbb{F}_q^{m imes n}$ such that $\mathbf{H} \mathsf{vec}(ilde{\mathbf{E}})^ op = \mathbf{y}^ op$ and $\mathsf{rank}(ilde{\mathbf{E}}) \leq r$

Mirath relies on the hardness of the (unstructured) Syndrome MinRank problem

Modeling

Mirath relies on the Dual Support Decomposition modeling for MinRank [BFG⁺24]

- Modeling based on the syndrome version of the MinRank problem
- \diamond Modeling checking the rank of ${f E}$ using matrix decomposition
- Updated MinRank parameter sets to minimize the witness size

Modeling

Mirath relies on the Dual Support Decomposition modeling for MinRank [BFG⁺24]

- Modeling based on the syndrome version of the MinRank problem
- \diamond Modeling checking the rank of ${\bf E}$ using matrix decomposition
- Updated MinRank parameter sets to minimize the witness size

Instance	Modeling	Witness Size (for NIST-1 security level)				
MIRA	Annihilator q -polynomial	$[k+rm] \cdot \log_2(q)$	76 B			
MiRitH	Kipnis Shamir	$[k+r(n-r)] \cdot \log_2(q)$	66 B			
Mirath	Dual Support Decomposition	$[rm + r(n-r)] \cdot \log_2(q)$	41 B			

Table 2: Mirath modeling and resulting witness sizes

Modeling

Protocol Overview

Public Input

- An instance (\mathbf{H},\mathbf{y}) of the Syndrome MinRank problem

Private Input

- Matrix $\mathbf{S} \in \mathbb{F}_q^{m imes r}$ and matrix $\mathbf{C}' \in \mathbb{F}_q^{r imes (n-r)}$

Protocol

- 1. Verify the rank of ${f E}$ by computing ${f E}={f S}\cdot({f I}_r\ {f C}')$
- 2. Verify that ${\bf E}$ is a solution by checking ${\bf H}{\sf vec}({\bf E})^{\top}={\bf y}^{\top}$

MPCitH Frameworks

- ♦ Two recent improvements to the MPCitH paradigm **TCitH** [FR25] & **VOLEitH** [BBD+23]
- ♦ TCitH and VOLEitH can be described using the PIOP formalism [Fen24]

MPCitH Frameworks

- \diamond Two recent improvements to the MPCitH paradigm **TCitH** [FR25] & **VOLEitH** [BBD $^+$ 23]
- TCitH and VOLEitH can be described using the PIOP formalism [Fen24]

TCitH

- ♦ 5-round protocol
- Computation over a small field
- Several protocol repetitions
- Arguably simpler

VOLEitH

- 7-round protocol
- Computation over a large field
- One protocol execution
- Smaller signatures

Mirath & TCitH vs VOLEitH

- TCitH and VOLEitH lead to comparable sizes for modeling with low multiplicative depth
- $\diamond\;$ Mirath modeling features a small multiplicative depth d=2

Mirath & TCitH vs VOLEitH

- TCitH and VOLEitH lead to comparable sizes for modeling with low multiplicative depth
- \diamond Mirath modeling features a small multiplicative depth d=2

Mirath Instantiation

- Mirath is instantiated with the TCitH framework (with a VOLEitH variant also described)
- Mirath uses the one tree optimization for GGM trees [BBM+24]

Sizes & Performances

Implementation

Implementation Updates

- Overall improvement of the performances of the scheme
- Update of symmetric primitives (AES/Rijndael for some PRG, AES/Rijndael variant for cmt)
- ♦ Reported constant-time issues have been fixed [ABB+25]

Implementation

Implementation Updates

- Overall improvement of the performances of the scheme
- Update of symmetric primitives (AES/Rijndael for some PRG, AES/Rijndael variant for cmt)
- Reported constant-time issues have been fixed [ABB+25]

Fine-Tuning Parameters

MPC parameters updated based on the new performance profile of Mirath

Implementation

Implementation Updates

- Overall improvement of the performances of the scheme
- Update of symmetric primitives (AES/Rijndael for some PRG, AES/Rijndael variant for cmt)
- ♦ Reported constant-time issues have been fixed [ABB+25]

Fine-Tuning Parameters

MPC parameters updated based on the new performance profile of Mirath

Benchmark & Ongoing Work

- ♦ Numbers reported for the fastest variant of the optimized implementation (avx2 & aes-ni)
- Ongoing work targeting additional performance improvements

Sizes & Performances

Mirath-1 Instance			sk	pk	sig.	Keygen	Sign	Verify
Mirath-1a (v2.0.0)	Short	q = 16	32 B	73 B	3.1 kB	0.2 M	166 M	123 M
Mirath-1a (v2.1.0)	Short	q = 16	32 B	73 B	3.2 kB	0.1 M	16 M	14 M
Mirath-1b (v2.1.0)	Short	q = 2	32 B	57 B	3.0 kB	0.6 M	24 M	18 M
Mirath-1a (v2.0.0)	Fast	q = 16	32 B	73 B	3.8 kB	0.2 M	11 M	9.8 M
Mirath-1a (v2.1.0)	Fast	q = 16	32 B	73 B	3.8 kB	0.1 M	5.9 M	3.3 M
Mirath-1b (v2.1.0)	Fast	q=2	32 B	57 B	3.5 kB	0.5 M	9.8 M	5.5 M

Table 3: Sizes and performances (CPU cycles) of Mirath (TCitH) for NIST-1 security level

Sizes & Performances

Mirath-5 Instance			sk	pk	sig.	Keygen	Sign	Verify
Mirath-5a (v2.0.0)	Short	q = 16	64 B	147 B	12.5 kB	0.4 M	1415 M	712 M
Mirath-5a (v2.1.0)	Short	q = 16	64 B	147 B	13.1 kB	0.4 M	132 M	119 M
Mirath-5b (v2.1.0)	Short	q=2	64 B	112 B	12.3 kB	1.9 M	155 M	132 M
Mirath-5a (v2.0.0)	Fast	q = 16	64 B	147 B	15.6 kB	0.4 M	87 M	65 M
Mirath-5a (v2.1.0)	Fast	q = 16	64 B	147 B	15.5 kB	0.4 M	40 M	28 M
Mirath-5a (v2.1.0)	Fast	q = 2	64 B	112 B	14.2 kB	2.0 M	70 M	52 M

Table 4: Sizes and performances (CPU cycles) of Mirath (TCitH) for NIST-5 security level

Comparison to other schemes

- Stay tuned till the end of the session -

Overview of MPCitH based Signatures using the ${\color{red} {\bf PQ\text{-}SORT}}$ benchmarking tool

Advantages

Security - Well established MinRank problem
 Conservative approach based on unstructured instances

Advantages

- Security Well established MinRank problem
 Conservative approach based on unstructured instances
- Parameters Adaptive and easily tunable parameters & Resilience against attacks

Advantages

- Security Well established MinRank problem
 Conservative approach based on unstructured instances
- Parameters Adaptive and easily tunable parameters & Resilience against attacks
- Size Small public keys & Competitive signature size
 |pk+ sig.| ⇒ 3.0 3.2 kB for Mirath, 3.7 kB for ML-DSA, 7.8 kB for SLH-DSA (for NIST-1 level)

Advantages

- Security Well established MinRank problem
 Conservative approach based on unstructured instances
- Parameters Adaptive and easily tunable parameters & Resilience against attacks
- Size Small public keys & Competitive signature size
 |pk+ sig.| ⇒ 3.0 3.2 kB for Mirath, 3.7 kB for ML-DSA, 7.8 kB for SLH-DSA (for NIST-1 level)

Limitations

Size - Quadratic growth of signature sizes with respect to security level

Advantages

- Security Well established MinRank problem
 Conservative approach based on unstructured instances
- Parameters Adaptive and easily tunable parameters & Resilience against attacks
- ♦ Size Small public keys & Competitive signature size |pk+sig.| \Rightarrow 3.0 3.2 kB for Mirath, 3.7 kB for ML-DSA, 7.8 kB for SLH-DSA (for NIST-1 level)

Limitations

- Size Quadratic growth of signature sizes with respect to security level
- Performances Slower than lattice-based signature schemes
 But competitive with many other post-quantum signatures

References I

- [ABB+25] Olivier Adjonyo, Sebastien Bardin, Emanuele Bellini, Gilbert Ndollane Dione, Mahmudul Faisal Al Ameen, Robert Merget, Frederic Recoules, and Yanis Sellami.
 Systematic timing leakage analysis of nist pqdss candidates: Tooling and lessons learned.
 arXiv preprint arXiv:2509.04010, 2025.
- [BBD+23] Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini, Lawrence Roy, and Peter Scholl.
 Publicly verifiable zero-knowledge and post-quantum signatures from VOLE-in-the-head.
 In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V, volume 14085 of LNCS, pages 581–615.
 Springer, Cham, August 2023.
- [BBM+24] Carsten Baum, Ward Beullens, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence Roy, and Peter Scholl.
 One tree to rule them all: Optimizing ggm trees and owfs for post-quantum signatures.
 In International Conference on the Theory and Application of Cryptology and Information Security, pages 463–493.
 Springer, 2024.
- [BFG⁺24] Loïc Bidoux, Thibauld Feneuil, Philippe Gaborit, Romaric Neveu, and Matthieu Rivain. Dual support decomposition in the head: Shorter signatures from rank SD and MinRank. In Kai-Min Chung and Yu Sasaki, editors, ASIACRYPT 2024, Part II, volume 15485 of LNCS, pages 38–69. Springer, Singapore, December 2024.

References II

Thibauld Feneuil. [Fen24]

The polynomial-iop vision of the latest mpcith framework for signature schemes.

PQ Algebraic Cryptography Workshop, 2024.

[FR25] Thibauld Feneuil and Matthieu Rivain.

Threshold computation in the head: Improved framework for post-quantum signatures and zero-knowledge

arguments.

Journal of Cryptology, 38(3):28, 2025.